PFAFFIAN ORIENTATIONS, FLAT EMBEDDINGS, AND
STEINBERG’S CONJECTURE

A Thesis
Presented to
The Academic Faculty

by

Peter Whalen

In Partial Fulfillment
of the Requirements for the Degree
Doctor of Philosophy in the
School of Mathematics

Georgia Institute of Technology
May 2014
PFAFFIAN ORIENTATIONS, FLAT EMBEDDINGS, AND STEINBERG’S CONJECTURE

Approved by:

Robin Thomas, Advisor
School of Mathematics
Georgia Institute of Technology

Vijay Vazarani
College of Computing
Georgia Institute of Technology

Sergey Norin
Department of Mathematics and Statistics
McGill University

Xingxing Yu
School of Mathematics
Georgia Institute of Technology

William Trotter
School of Mathematics
Georgia Institute of Technology

Date Approved: 15 April 2014
To Krista
First and foremost, I would like to thank my advisor, Robin Thomas, for his years of guidance and encouragement. He has provided a constant stream of problems, ideas and opportunities and I am grateful for his continuous support. Robin has had the remarkable ability to present a problem and the exact number of hints and suggestions to allow me to push the boundaries of what I can do. Under his tutelage, I’ve grown both as a mathematician and as a professional. But perhaps his greatest gift is his passion, for mathematics and for his students. As a mentor and as a role-model, I’m grateful to him for his inspiration.

I’d like to thank my undergraduate advisor, Sergey Norin, without whom I would have never fallen in love with graph theory. It is a rare teacher that truly changes a life; I’d like to thank Paul Seymour and Robert Perrin for being two that sent me down this path. As a graduate student, I’ve had the fortune to meet and work with a number of wonderful people and I’d like to acknowledge them here: my collaborator and office mate Chun-Hung Liu, Arash Asadi, Albert Bush, Steven Ehrlich, Geehoon Hong, Robert Krone, Luke Postle, and Carl Yerger. Without them, graduate school would have been neither as productive nor as enjoyable.

Last, but certainly not least, I’d like to thank my family. My parents, for their unwavering support, for celebrating with me when I succeed, and for believing in me when I fail. And my wife, Krista, whose constant love makes everything I do possible.
TABLE OF CONTENTS

DEDICATION .. iii

ACKNOWLEDGEMENTS ... iv

LIST OF FIGURES .. vii

SUMMARY ... x

I INTRODUCTION ... 1

1.1 Graph Theory ... 1

1.2 Planar Coloring .. 3

1.3 Matchings and Pfaffian Orientations 6

1.4 Embeddings .. 12

1.5 A Summary of Results .. 17

II STEINBERG’S CONJECTURE ... 21

2.1 Introduction ... 21

2.2 The Theorem ... 22

2.3 Reducible Preliminaries .. 23

2.4 Reducing the Reducible Configurations 32

2.5 Discharging ... 47

III ODD $K_{3,3}$ SUBDIVISIONS .. 57

3.1 Introduction ... 57

3.2 Lemmas ... 59

3.3 Proof of Theorem 3.1.3 .. 69

IV PFAFFIAN ORIENTATIONS ... 75

4.1 Introduction ... 75

4.2 Structural Lemmas ... 77

4.3 Weaves .. 92

4.4 The Main Result .. 96
LIST OF FIGURES

1.1 Planar graph with chromatic number 4 and no 4-cycles 4
1.2 Planar graph with chromatic number 4 and no 5-cycles 4
1.3 A Tetrad .. 5
1.4 The Heawood Graph 11
1.5 Rotunda .. 11
1.6 The Reidemeister Moves 13
1.7 Linking Numbers ... 14
1.8 The Petersen Family 15
1.9 $Y - \Delta$ and $\Delta - Y$ transformations 16
2.1 The graph H^* ... 23
2.2 A tetrad ... 27
2.3 Configurations for Property 7 29
2.4 Configurations 1 through 9 30
2.5 Configurations 10 through 16 31
2.6 Configuration 1 ... 32
2.7 Configuration 2 ... 33
2.8 Configuration 3 ... 34
2.9 Configuration 4 ... 35
2.10 Configuration 5 ... 36
2.11 Configuration 6 ... 37
2.12 Configuration 7 ... 38
2.13 Configuration 8 ... 39
2.14 Configuration 9 ... 40
2.15 Configuration 10 .. 40
2.16 Configuration 11 .. 41
2.17 Configuration 12 .. 42
2.18 Configuration 13 .. 43
2.19 Configuration 14 .. 44
2.20 Configuration 15 .. 45
2.21 Configuration 16 .. 46
2.22 Rule 5 .. 48
2.23 Rule 6a .. 48
2.24 Rule 6b .. 48
3.1 A graph showing that Theorem 3.1.3 does not extend to 3-connected
graphs .. 58
3.2 The graph V_8 .. 59
3.3 The structures of Lemma 3.2.1 59
3.4 The structures of Lemma 3.2.2 66
4.1 A snarl of width 2 in a weave 81
4.2 The outcomes of Lemma 4.2.7 89
4.3 Three drawings of the Heawood graph 97
4.4 Two drawings of Rotunda 98
5.1 The graph K_{4}^+ .. 126
5.2 The embedding for Lemma 5.4.6 128
5.3 Three trivial foundational paths 135
5.4 A pinwheel with 4 vanes 136
5.5 A grid and a wall 140
5.6 An embedded tribranch 144
6.1 A snakelet ... 149
6.2 A serpent ... 149
6.3 The five transitions with embeddings 151
6.4 Parity and links for E_1 155
6.5 Parity and links for E_2 156
6.6 Parity and links for E_3 156
6.7 Parity and links for E_4 157
6.8 Parity and links for E_5 157
6.9 The two tails .. 160
7.1 Exceptional graphs allowing six cycles 164
7.2 The graph H_0 ... 165
7.3 The graph H_1 ... 166
7.4 The graphs Γ_1 and Γ_2 168
SUMMARY

The first result of this thesis is a partial result in the direction of Steinberg’s Conjecture. Steinberg’s Conjecture states that any planar graph without cycles of length four or five is three colorable. Borodin, Glebov, Montassier, and Raspaud showed that planar graphs without cycles of length four, five, or seven are three colorable and Borodin and Glebov showed that planar graphs without five cycles or triangles at distance at most two apart are three colorable. We prove a statement that implies the first of these theorems and is incomparable with the second: that any planar graph with no cycles of length four through six or cycles of length seven with incident triangles distance exactly two apart are three colorable.

The second and third chapters of this thesis are concerned with the study of Pfaffian orientations. A theorem proved by William McCuaig and, independently, Neil Robertson, Paul Seymour, and Robin Thomas provides a good characterization for whether or not a bipartite graph has a Pfaffian orientation as well as a polynomial time algorithm for that problem. We reprove this characterization and provide a new algorithm for this problem. In Chapter 2, we generalize a preliminary result needed to reprove this theorem. Specifically, we show that any internally 4-connected, non-planar bipartite graph contains a subdivision of $K_{3,3}$ in which each path has odd length. In Chapter 3, we make use of this result to provide a much shorter proof using elementary methods of this characterization.

In the fourth and fifth chapters we investigate flat embeddings. A piecewise-linear embedding of a graph in 3-space is flat if every cycle of the graph bounds a disk disjoint from the rest of the graph. We provide a structural theorem for flat embeddings that indicates how to build them from small pieces in Chapter 4. In Chapter 5, we present
a class of flat graphs that are highly non-planar in the sense that, for any fixed k, there are an infinite number of members of the class such that deleting k vertices leaves the graph non-planar.
CHAPTER I

INTRODUCTION

In this chapter, we present the basic terminology and definitions that serve as the foundation for the work to follow as well as some motivation for the various results presented in this paper. In Section 1.1 we present a brief overview of the basic definitions in graph theory. In Section 1.2 we provide some motivation and history for coloring graphs in the plane. In Section 1.3 we provide an introduction to matching theory and the topic of Pfaffian orientations. Finally, in Section 1.4, we provide context for questions regarding embedding graphs in three dimensions.

1.1 Graph Theory

We follow the exposition of Bondy and Murty from [7]. A graph is an ordered triple $(V(G), E(G), \phi_G)$ in which $V(G)$ is a non-empty set of vertices, $E(G)$ is a set disjoint from $V(G)$ of edges, and ϕ_G is an incidence function that maps each edge onto a pair of vertices. If e is an edge with $\phi_G(e) = uv$ then we say that u and v are the ends of e and e joins u and v. If there exists an edge e such that $\phi_G(e) = uv$ then we say that u and v are adjacent to one another. A loop in a graph is an edge e with both ends the same. Parallel edges (or multiple edges) are edges e, f with the same ends. Graphs that contain no loops or parallel edges are simple. When we need to distinguish those graphs that do allow loops and parallel edges, we refer to them as multigraphs. When it is clear from the context whether we are dealing with simple graphs or multigraphs we often omit the distinction and refer to them as just graphs.

In order to depict graphs, we often represent them with vertices drawn as dots and edges as lines between them.

For a graph $G = (V, E, \phi)$, let $V' \subseteq V, E' \subseteq E$, ϕ' be the restriction of ϕ to E'
and, for every edge in E', both ends are in V'. Then we say that $G' = (V', E', \phi')$ is a subgraph of G. A subgraph (V', E', ϕ') is said to be induced if E' contains every edge of E with both ends in V'. If u and v are vertices of G, when we identify u and v, we remove u and v from G, add a new vertex w, and, for each edge e with $\phi(e) = (u, x)$ or $\phi(e) = (v, x)$, $x \in V$, we set $\phi(e) = (w, x)$ instead. Edge contraction is the act of identifying two adjacent vertices and deleting the edge between them. We say that a graph H is a minor of another graph G if we can form H from G be a sequence of deletions of vertices, deletions of edges, and contractions of edges. We say that a graph H is a subdivision of a graph G if H can be formed from G by repeatedly replacing edges of G with paths that are vertex disjoint from G except for their ends.

Finally, we say that two graphs G and H are isomorphic if there exist bijections $\phi : V(G) \to V(H)$ and $\rho : E(G) \to E(H)$ such that if the ends of $e \in E(G)$ are u and v, then the ends of $\rho(e)$ are $\phi(u)$ and $\phi(v)$. We say that u and v are neighbors and we use the notation $N(u)$ to be the set of neighbors of u. We define $\text{deg}(u)$ to be the number of edges incident with u with loops counted twice and extend the definition of N to sets of vertices X, so that $N(X)$ is the set of vertices not in X with at least one neighbor in X.

We often discuss subpaths and their unions so we introduce notation to facilitate this. Let P be a path and u and v vertices of P. Then we refer to the subpath of P between u and v (inclusive) as uPv. For convenience, when it does not create ambiguity, we also refer to $V(uPv)$ as uPv. Similarly, let P_1, \ldots, P_k be paths and $x_0, x_1, \ldots x_k$ vertices with x_{i-1} and x_i on P_i for $1 \leq i \leq k$. Then $x_0P_1x_1P_2x_2\ldots x_kP_k = \bigcup_{i=1}^{k} x_{i-1}P_ix_i$.

We will use a number of other terms throughout this paper and generally use common terminology without explicit definition. For a formal introduction to these terms, we refer readers to any introductory text in graph theory, for example the book by Diestel [13].
1.2 Planar Coloring

A coloring of a graph is a mapping $\phi : V(G) \to \mathbb{Z}$ such that if u and v are adjacent, $\phi(u) \neq \phi(v)$. The chromatic number of a graph is the smallest value χ such that χ is the size of the range of some coloring of G. An early question in coloring theory arose from cartographers who, apocryphally, noticed that their maps could be colored using only a small number of colors with the property that countries sharing a border had different colors. In modern times, graph coloring questions have relevance in different fields, for instance in register allocation for compilers. While these modern applications are concerned with general graphs, the classical question is mostly concerned planar graphs, those that can be drawn on the plane without crossings, beginning with the famous Four Color Conjecture (now Theorem):

Theorem 1.2.1. Every planar graph has chromatic number at most 4.

An important open question for over a century, the four color theorem was settled in 1976 by Appel and Haken [2, 3]. This theorem does not entirely settle the question of planar graph coloring: specifically, it is reasonable to ask the question “When does a planar graph have chromatic number strictly less than 4”? It is well known that any graph has chromatic number 2 if and only if it contains no odd cycles, but determining whether planar graphs are three-colorable is fundamentally difficult. Garey, Johnson, and Stockmeyer [16] proved that determining whether a planar graph is three colorable is NP-complete, so any characterization that leads to a polynomial-time algorithm is unlikely. There are a number of partial results, however, for certain types of planar graphs. One such classical result is Grotzsch’s Theorem:

Theorem 1.2.2. Triangle-free planar graphs are three-colorable.

Various extensions of this theorem exist. For example, Thomassen showed in [48] that planar graphs with no three or four cycles are 3-list colorable. In a list coloring, each vertex is assigned a list of colors of a particular length and the color assigned to
A natural next question is “What happens when we allow triangles”? Richard Steinberg proposed the following conjecture:

Conjecture 1.2.3. Planar graphs with no cycles of length four or five are three-colorable

We note first that this conjecture is best possible in the sense that there are planar graphs with no cycles of length 4 that are not three colorable (for instance that in Figure 1.1 and those with no cycles of length 5, such as that depicted in Figure 1.2.

While this conjecture remains unsolved, there has been substantial progress made on various fronts. Paul Erdős suggested in 1991 that instead of trying to only exclude 4 and 5 cycles, we instead exclude cycles of lengths 4 through k. Abbott and Zhou [1] showed that planar graphs excluding cycles of length four through eleven are three-
colorable in 1991. In 1995, Sanders and Zhao \[44\] improved this to cycles of length four through nine. This approach has so far culminated in the following theorem

Theorem 1.2.4. (Borodin et al) \[10\] Every planar graph without cycles of length from 4 to 7 is 3-colorable.

These coloring arguments, like the proof of the four color theorem, tend to use a reduction-discharging approach. The first half of the arguments provide a list of subgraphs that are not present in a minimal counterexample. Such structures have the property that after identifying a pair of vertices and possibly deleting others, the resulting graph is smaller and therefore colorable. After unidentifying the vertices, the resulting coloring extends to the remainder of the graph. The tetrad depicted in figure 1.3 is one common reducible configuration first discussed by Borodin in \[10\].

The second half of such arguments is the discharging step, based on Euler’s formula:

Theorem 1.2.5. In a connected plane graph, \(V + F = E + 2\) where \(V\) is the number of vertices, \(F\) the number of faces, and \(E\) the number of edges.

In our context, this is often rewritten as:

Theorem 1.2.6. In a connected plane graph, \(\sum_{v \in V(G)}(\deg(v) - 4) + \sum_{f \in F(G)}(|f| - 4) = -8\) where, for a face \(f\), \(|f|\) is the length of the walk bounding \(f\).

In a discharging argument, we assign charge to each vertex and to each face, in our case equal to the degree of the vertex minus four or the size of the face minus
four. The total charge in the graph is then -8. We then apply a set of rules by which charge moves between faces and vertices so that each interior face and vertex has non-negative charge. By then bounding the charge on the exterior face away from -8, we then reach a contradiction.

A different type of approach than the Erdős method is to exclude 5 and 7 cycles (so not cycles of size four or six) and to look at the minimum distance between two triangles. Baogang Xu showed [53] in 2006 that any such graph without intersecting triangles is three colorable. If we choose not to exclude 7 cycles (so only exclude five cycles), Borodin and others [11] showed in 2003 that any planar graph without five cycles and without triangles at a distance less than four is three colorable, a result later strengthened by Xu to only exclude triangles at a distance less than 3. A recent paper by Borodin and Glebov [8] improves this further to

Theorem 1.2.7. (Borodin and Glebov) [8] Every planar graph without cycles of length 5 and with the minimum distance between triangles at least 2 is three colorable.

In Chapter 2, we will present a strengthening that combines some of these results: we forbid cycles of length 4, 5, and 6 and allow cycles of length 7 so long as they do not have incident triangles too close together. The main thrust of Chapter 2 is to formalize the preceding statement and to provide a proof which includes techniques that may be of use in further investigations of Steinberg’s Conjecture.

1.3 Matchings and Pfaffian Orientations

In a graph G, a *matching* is a set of edges with the property that no two share an end. A *perfect matching* is a matching in which each vertex is incident with one of the edges of the matching. Matchings have significant historical importance as well as substantial interest in the literature. For example, Hall’s celebrated Marriage Theorem characterizes those bipartite graphs that contain perfect matchings:
Theorem 1.3.1 (Hall). Let G be a bipartite graph with bipartition (A, B). Then G has a complete matching from A to B if and only if for every $X \subseteq A$, $|N(X)| \geq |X|$.

In general graphs, the characterization is slightly more complex, but also well-known. In the following, let $o(X)$ where X is a set of vertices be the number of odd components of G after deleting X.

Theorem 1.3.2 (Tutte). Let G be a graph. Then G has a perfect matching if and only if for every $X \subseteq V(G)$, $o(X) \leq |X|$.

We note that the problem of finding a perfect matching in a graph algorithmically also has a classical solution in the Blossom Algorithm of Edmonds [14].

Before we turn our attention toward the main thrust of this section, we mention one natural definition and extension. We say that a graph is k-extendable if for every set of disjoint edges of size k, there exists a perfect matching containing that set. A connected 1-extendable graph is matching-covered. This leads to the following straightforward extension of Hall’s Theorem:

Theorem 1.3.3. Let G be a connected bipartite graph with bipartition (A, B) with $k \geq 0$. Then G is k-extendable if and only if for every $X \subseteq A$, $N(X) = B$ or $|N(X)| \geq |X| + k$.

Since the question of finding a single perfect matching in a graph has elegant classical solutions, we turn our attention instead to the problem of counting the number of perfect matchings in a particular graph. Here there is little hope of finding an algorithmically good solution to the problem; indeed work by Valiant has shown that counting the number of perfect matchings in a general graph is $\#P$-Complete [49]. Work by Kasteleyn [21], however gives us hope as to how to proceed by defining a Pfaffian orientation of a graph:

Definition. Let G be a directed graph. Then G is Pfaffian if for every even cycle in the underlying undirected graph, C such that $G - V(C)$ contains a perfect matching,
the number of edges directed in either direction of the cycle is odd. If G is an undirected graph, we say that G is Pfaffian if there is an orientation of the edges such that the resulting directed graph is Pfaffian. Such an orientation is called a Pfaffian orientation.

Pfaffian orientations are of interest due to two classical theorems of Kasteleyn:

Theorem 1.3.4. There is a polynomial-time algorithm to count the number of perfect matchings in a graph given a Pfaffian orientation

Theorem 1.3.5. Every planar graph is Pfaffian

The first of these theorems arises from a natural linear-algebraic interpretation of the Pfaffian of a graph. Specifically, we define the skew-adjacency matrix of a directed graph G with vertex set $\{1, 2, \ldots, n\}$ to be the matrix with values a_{ij} where

$$ a_{ij} = \begin{cases}
1 & ij \in E(G) \\
-1 & ji \in E(G) \\
0 & \text{otherwise}
\end{cases} \quad (1) $$

Let A be a $2n \times 2n$ matrix. Let P be a partition of the elements of $[1, 2, \ldots, 2n]$ into unordered pairs $(i_1, j_1), (i_2, j_2), \ldots (i_n, j_n)$ and define the permutation

$$ \pi(P) = \begin{bmatrix}
1 & 2 & 3 & \cdots & 2n - 1 & 2n \\
i_1 & j_1 & i_2 & \cdots & i_n & j_n
\end{bmatrix} \quad (2) $$

Then the Pfaffian of A is

$$ \text{Pf}(A) = \sum_P \text{sgn}(\pi(P))a_{i_1j_1}a_{i_2j_2}\ldots a_{i_nj_n} \quad (3) $$

Where the sum above is taken over all possible partitions P. In the case where A is the skew-adjacency matrix of a Pfaffian orientation of a graph, the absolute value of
the pfaffian of A is the number of perfect matchings of G. This can then be computed easily using a fact from linear algebra for skew-symmetric matrices:

$$\det(A) = (\text{Pf}(A))^2$$ \hspace{1cm} (4)

Since the matrix A is easy to write down and the determinant is polynomial-time to compute, this immediately gives a polynomial time algorithm to count the number of perfect matchings in a Pfaffian graph.

The problem of determining whether or not a graph has a Pfaffian orientation is wide open in general. It is, however, solved for a fair number of classes of graphs and there exist several other non-polynomial time computable characterizations for it.

Note first that if we wish to determine whether or not G is Pfaffian, we may delete any edge of G that is not in a perfect matching since it has no effect on the outcome. Similarly we may assume that G is connected since G is Pfaffian if and only if each of its components is. We introduce here two classes of matching-covered graphs that are of particular interest. Bricks are 3-connected matching covered graphs such that $G \setminus u \setminus v$ has a perfect matching for every two distinct vertices u and v. Braces are matching covered bipartite graphs in which each matching of size 2 can be extended to a perfect matching.

By a theorem of Lovasz and Plummer [30], any matching covered graph can be decomposed in a way unique up to edge multiplicities into bricks and braces, referred to as the bricks and braces of G, in polynomial time. Vazirani and Yannakakis [51] made use of this decomposition to prove that

Theorem 1.3.6. G is Pfaffian if and only if all its bricks and braces are Pfaffian.

This reduces the question of determining whether a graph has a Pfaffian orientation to that of determining whether or not bricks and braces have a Pfaffian orientation. While this remains open for bricks, there is a characterization of Pfaffian
bipartite graphs due to Little that requires a small number of preliminaries. Given a vertex of degree 2, we refer to the process of contracting both incident edges as \emph{bicontraction}. Then let G be a matching covered graph. We say that H is a matching minor of G if G contains a subgraph H' so that $G - V(H')$ contains a perfect matching and H can be obtained from H' by repeatedly bicontracting edges. This leads to Little’s elegant result [29]:

Theorem 1.3.7. Let G be a bipartite graph. Then G is Pfaffian if and only if it does not contain $K_{3,3}$ as a matching minor.

The disadvantage to this theorem is that it does not immediately give rise to a polynomial time algorithm. Instead, a result of Robertson, Seymour, and Thomas [42] provides an algorithm for determining whether a brace has a Pfaffian orientation which relies on a theorem also independently proven by McCuaig [31]:

Theorem 1.3.8. A brace has a Pfaffian orientation if and only if it is isomorphic to the Heawood graph, or if it can be obtained from planar braces by repeated application of the trisum operation.

Here, the trisum operation is a way of gluing together three different graphs found in [42]. Specifically, let G_0 be a graph and C a cycle of G_0 of length 4 such that $G[V(C)]$ contains a perfect matching. Let G_1, G_2, G_3 be subgraphs of G_0 such that $G_1 \cup G_2 \cup G_3 = G_0$ and for distinct $i, j \in \{1, 2, 3\}$, $G_i \cap G_j = C$ and $V(G_i) - V(C) \neq \emptyset$. Let G be obtained from G_0 by deleting some (possibly none) of the edges of C. Then G is a \emph{trisum} of G_1, G_2 and G_3.

The underlying theorem in this case was actually:

Theorem 1.3.9. Let G be a nonplanar brace. Then G contains one of $K_{3,3}$, the Heawood graph, or Rotunda as a matching minor.

We note that in addition to providing a way to test whether a brace has a Pfaffian orientation, this theorem, using an algorithm of Kasteleyn for planar graphs also
provides a way to find a Pfaffian orientation in polynomial time. This result has broader impact as well, solving several equivalent problems of interest beyond graph theory. For example, a longstanding problem in economics is the question of whether a matrix whose entries are represented only by signs is non-singular [43]. The Pólya permanent problem which asks when can the permanent of a 0–1 matrix be computed by computing the determinant of a matrix related by replacing 1’s and −1’s in the original matrix. Both of these questions (and others) are equivalent to the problem of finding Pfaffian orientations in bipartite graphs [42].

While this theorem provides a nice solution to a long open problem, the proof requires substantial effort. We provide in Chapter 4 a significantly shorter proof using elementary techniques. In Chapter 3, we prove a theorem for finding odd subdivisions of $K_{3,3}$ in well-connected bipartite graphs; a theorem of interest both for its use in Chapter 4 in regards to matching theory and on its own merits.
1.4 Embeddings

An embedding of a graph G in a topological space Σ is a representation of G in which vertices of G are mapped to points of Σ and edges of G are mapped to arcs of Σ (images of $[0,1]$ under homeomorphism) in such a way that for each edge $e \in E(G)$, $e = uv$, the endpoints of the arc associated to e are the points associated with u and v. Further, no two arcs intersect except at their ends. In our context we will restrict embeddings to be piece-wise linear, which means that each arc is the union of a finite number of straight lines, disjoint from one another except at their ends.

We are often interested in the question, "Given a topological space, which graphs embed in it?". The simplest of these questions is for planar graphs, those that embed on the plane. A classical theorem of Kuratowski [28] gives an elegant solution:

Theorem 1.4.1. A graph is planar if and only if it does not contain K_5 or $K_{3,3}$ as a minor.

It is easy to see that if H does not embed in Σ and G contains H as a minor then G does not embed in Σ and similarly if G embeds in Σ and H is a minor of G, then H also embeds in Σ. The property of embeddings is therefore minor-closed, so a deep theorem of Robertson and Seymour [38] tells us that

Theorem 1.4.2. For any minor closed and isomorphism-closed set $\{ \}$ of graphs, there is a finite subset H_1, H_2, \ldots, H_k such that a graph does not belong to $\{ \}$ if and only if it has a minor isomorphic to some H_i, $1 \leq i \leq k$.

Therefore there is a Kuratowski-like minor exclusion theorem for every topological space. This theorem is non-constructive, however, so the list of graphs that must be excluded is known for only two topological surfaces: the plane and the projective plane. In the projective plane, there are 35 minor-minimal graphs, a theorem proved by Archdeacon [4] from a list originally compiled by Glover, Huneke, and Wang [17]. In the algorithmic setting, there are several linear-time algorithms to test whether a
given graph is planar and to find a planar embedding. Work by Mohar [33] extends this to other surfaces, giving a linear time algorithm to test whether a graph is embeddable on a fixed surface and then finding such an embedding if it exists. If the surface is part of the input, however, this problem becomes NP-hard.

While graph embeddings on surfaces are reasonably well understood, we turn our attention instead to embeddings of graphs in 3-dimensions. Every graph has an embedding in S^3, the 3-dimensional sphere. We can see this by taking the book embedding of a graph G: embed each of the vertices of G on a line and then, for each edge, embed the edge in a unique half-plane with boundary the line. For this type of embedding to have meaning, then, we must impose some restrictions.

Before we discuss these restrictions we briefly mention regular projections as a way to represent embeddings in three dimensions. A regular projection of an embedding is a projection of the embedding in a plane in which there are only a finite number of points in which the projections of arcs cross and at each such point exactly two arcs cross. We also present three transformations, the Reidemeister moves in Figure 1.6. Two regular projections represent the same embedding if and only if they are related by a sequence of Reidemeister moves [34].

One natural restriction is to require that any two disjoint cycles have linking
number zero. The linking number of two vertex-disjoint cycles is computed by taking a regular projection of the two cycles, orienting them arbitrarily and then, for each intersection, adding either $+1$ or -1 to the linking number as appropriate according to Figure 1.7. The linking number is then one half of this sum.

An embedding of a graph in which every two disjoint cycles satisfy this property is called linkless. These embeddings arose in work by Conway and Gordon [12] who proved that the complete graph K_6 has no linkless embedding. A related notion is that of a flat embedding: one in which every cycle bounds a disk disjoint from the rest of the graph. Every flat embedding is then a linkless embedding, but the converse is false. A form of the converse is true, however, every graph that admits a linkless embedding also admits a flat embedding. This follows from a structure theorem of Robertson, Seymour, and Thomas:

Theorem 1.4.3. For a graph G the following conditions are equivalent.

(1) G has a flat embedding

(2) G has a linkless embedding

(3) G has no minor isomorphic to a member of the Petersen family
Figure 1.8: The Petersen Family
Here, the Petersen family is the set of seven graphs pictured in Figure 1.8. These are the seven graphs obtainable from K_6 by means of a sequence of $Y - \Delta$ or $\Delta - Y$ transformations. A $Y - \Delta$ transformation replaces a degree three vertex with a triangle and a $\Delta - Y$ transformation is its inverse. These operations are depicted in Figure 1.9. We note that both of these transformations preserve the property of being linkless (or flat).

In many regards, flat embeddings are more convenient than linkless ones and are a natural 3-dimensional analogue for planar embeddings. There are several natural examples of flat graphs. First, planar graphs are naturally flat: a planar embedding embedded in S^2 is flat. Another example is the class of apex graphs, those graphs G that contain a vertex v such that $G \setminus \{v\}$ is planar. In this case, we embed $G \setminus \{v\}$ planarly, and then embed v off of that plane. For each edge of v, we embed it as the natural straight-line between v and the other end of the edge. Then this embedding is flat (and hence linkless). There are, however, graphs that are far from being planar that are also linkless. We formalize that by saying that a graph G is k-almost planar if G contains a set of k vertices X such that $G \setminus X$ is planar. In Chapter 6, we exhibit a class of graphs such that for any fixed k an infinite number of them are not k-almost planar.
On the algorithmic side, Theorem 1.4.3 and the Graph Minor Containment Algorithm of [37] provide an $O(n^3)$ algorithm to test whether a particular graph has a flat or linkless embedding. These theorems, however, do not seem to provide a way to construct such an embedding in polynomial time. In the case of linkless embeddings, such a polynomial-time algorithms has been found by van der Holst [50] using an algebraic approach. In the case of flat embeddings, however, a polynomial time algorithm is claimed in [24], but the description of the algorithm misses a major ingredient. In that paper, the authors reduce the problem to 4-connected graphs. Such graphs have at most one flat embedding up to a homeomorphism of S^3. Then they invoke [40, Theorem 1.2], which implies that an embedding of one Kuratowski subgraph (a subdivision of K_5 or $K_{3,3}$) determines the embedding of every other Kuratowski subgraph, and they conclude that this gives a way to embed the entire graph uniquely. While the embedding is, in fact, unique, in order to obtain an algorithm we require output that is the presentation of this embedding. Finding and presenting such an embedding is far from trivial and seems unlikely from the information they present.

1.5 A Summary of Results

For the convenience of the reader, we summarize here the main results of this thesis, along with some of the necessary definitions.

The main theorem of Chapter 2, proven as Theorem 2.1.4 the following:

Theorem 1.5.1. Every planar graph without cycles of length four through six or eared seven cycles is 3-colorable.

Here, we say that a cycle, C, is *eared* if there exist vertices a, b, c, d in order around C such that the edges ab and cd are in triangles. In fact we show the following strengthening:
Theorem 1.5.2. Let G be a connected plane graph without cycles of length four through six or eared seven cycles and with an outer cycle of length at most 11. Suppose no interior vertex is adjacent to three vertices of the outer cycle. Then any proper 3-coloring of the subgraph induced by the outer cycle extends to a proper 3-coloring of G.

The primary purpose of Chapter 3 is to prove the following result of interest both independently and for its use in Chapter 4. Here, we say that a subdivision is \textit{odd} if each path that represents a subdivided edge has odd length. We say that a bipartite graph G is \textit{internally 4-connected} if it is 3-connected, has at least five vertices, and there is no partition (A, B, C) of $V(G)$ such that $|A|, |B| \geq 2, |C| = 3$ and G has no edge with one end in A and the other in B. Then we have that

Theorem 1.5.3. Every internally 4-connected bipartite non-planar graph contains an odd subdivision of $K_{3,3}$.

Odd subdivisions of $K_{3,3}$ are of particular importance in Chapter 4. Here we provide a simpler proof of a theorem of McCuaig, Robertson, Seymour, and Thomas [31, 42]:

Theorem 1.5.4. A brace has a Pfaffian orientation if and only if it is isomorphic to the Heawood graph, or if it can be obtained from planar braces by repeated application of the trisum operation.

On the way, we prove the following three theorems from [42] in a way that leads to a polynomial time algorithm to decide if a bipartite graph is Pfaffian:

Theorem 1.5.5. Let G be a nonplanar brace. Then G contains one of $K_{3,3}$, the Heawood graph, or Rotunda as a matching minor.

Theorem 1.5.6. Let G be a brace not isomorphic to the Heawood graph that contains the Heawood graph as a matching minor. Then G contains $K_{3,3}$ as a matching minor.
Theorem 1.5.7. Let G be a brace that contains Rotunda as a matching minor. Then either G contains a set X of four vertices such that $G \setminus X$ has three components or G contains $K_{3,3}$ as a matching minor.

In Chapter 5, we consider flat embeddings, specifically with an eye towards a polynomial-time algorithm to find a flat embedding. We show the following result:

Theorem 1.5.8. There exists an absolute constant N such that if G is a graph on at least N vertices at least one of the following holds:

1. G contains a graph in the Petersen family as a minor
2. G contains a complete separation
3. G contains a peripheral theta, the deletion of whose arc leaves G Kuratowski-connected
4. There exists $X \subseteq V(G), |X| \leq 1$ such that $G \setminus X$ is planar

We discuss each of these outcomes briefly. The first means that G does not have a flat embedding by Theorem 1.4.3. The fourth gives a natural flat embedding by saying that G is either apex or planar.

The second requires several definitions. First, we say that a graph H is a $Y - \Delta$ minor of G if it can be formed from G by a sequence of contractions, deletions, or $Y - \Delta$ operations. Let (A, B) be a separation in a graph G with $K = A \cap B$, K^* complete on K. Then the separation is complete if $|K| \leq 4$, $G \setminus K$ has exactly two components if $|K| = 4$, and G contains $A \cup K^*$ and $B \cup K^*$ as $Y - \Delta$ minors. Such complete separations are useful because, by a theorem of [41], a flat embedding of G can be formed naturally from flat embeddings of $A \cup K^*$ and $B \cup K^*$.

For the third outcome, we again need several definitions. First, we say that a graph is a theta graph if it is isomorphic to a cycle plus one additional edge between two vertices not adjacent in the cycle. This additional edge is the arc of the theta
graph. We say that G contains a peripheral theta if G contains an induced subgraph C isomorphic to a theta graph such that $G \setminus C$ is connected. Finally, a graph is Kuratowski-connected if it is 3-connected and, for every separation (A, B) with $|A \cap B| \leq 3$ there is a planar embedding of either $G[A]$ or $G[B]$ with $A \cap B$ embedded on the outer face. A panel for a cycle in a flat embedding is a disc with boundary that cycle disjoint from the rest of the graph. This result is of interest since we show

Theorem 1.5.9. Let G be a flatly embeddable graph. Assume that G has a peripheral theta graph with cycle C and arc e, and assume also that $G \setminus e$ is Kuratowski connected. Let ϕ be a flat embedding of $G \setminus e$, let Δ be a panel for C in the embedding ϕ, and let ψ be an embedding of G such that $\psi(e) \subseteq \Delta$ and $\psi(x) = \phi(x)$ for every vertex and edge x of $G \setminus e$. Then ψ is a flat embedding of G.

This means that there is a natural way to take a flat embedding for a $G \setminus e$ where e is the arc of a peripheral theta and use it to construct a flat embedding for G.

In Chapter 6, we consider the question of whether there exist flat graphs which are far from planar. Specifically, we are interested in whether there exists a family of graphs that are well-connected such that for any k there are infinitely many graphs in the family that are not planar after deleting any k vertices. We answer this question in the affirmative for 5 connected graphs and present such a family. We note that by [26] and [25], sufficiently large 6-connected flat graphs are either planar or apex, so this is, in a sense, best possible.
CHAPTER II

STEINBERG’S CONJECTURE

2.1 Introduction

This chapter is concerned with a partial result in the direction of Steinberg’s Conjecture. Proposed in 1976, Steinberg’s Conjecture [46] deals with three colorability of planar graphs:

Conjecture 2.1.1. (Steinberg) Let \(G \) be a planar graph that contains no four or five cycles. Then \(G \) is 3-colorable.

As discussed in more detail in the introduction, this conjecture is tight in the sense that we need to exclude both four cycles and five cycles. There have been several different techniques over the past 40 years in developing partial results in the direction of this conjecture, though they tend to fall into two distinct categories. The first, in a vein proposed by Paul Erdős is to exclude cycles of length 4 through \(k \) for some values of \(k \). This culminated in the following theorem (though it was later improved to only exclude cycles of length 5, and 7 and triangles that share an edge [9]):

Theorem 2.1.2. (Borodin et al) [10] Every planar graph without cycles of length from 4 to 7 is 3-colorable.

The other approach is to exclude some subset of these cycles and to look at the minimum distance between two triangles. If we only exclude five cycles, Borodin et al [11] showed in 2003 that any planar graph without five cycles and without triangles at a distance less than four is three colorable, a result later strengthened by Xu to only exclude triangles at a distance less than 3 [52]. A recent paper by Borodin and Glebov [8] improves this further to...
Theorem 2.1.3. (Borodin and Glebov) [8] Every planar graph without cycles of length 5 and with the minimum distance between triangles at least 2 is three colorable.

Our result is in a similar vein but requires a preliminary definition.

Definition. Let \(C \) be a cycle and \(a, b, c, d \) consecutive vertices in order around \(C \). Then we say that \(C \) is *eared* if the edges \(ab \) and \(cd \) are both in triangles and we refer to those triangles as *ears*.

Theorem 2.1.4. Every planar graph without cycles of length four through six or eared seven cycles is 3-colorable.

Note that this gives a theorem that is strictly stronger than Theorem 2.1.2, though still incomparable with Theorem 2.1.3. In proving this statement, we show several interesting new reductions that may have application to further results in settling Steinberg’s Conjecture.

2.2 The Theorem

In order to prove Theorem 2.1.4, we prove the following stronger theorem which immediately implies it.

Theorem 2.2.1. Let \(G \) be a connected plane graph without cycles of length four through six or eared seven cycles and with an outer cycle of length at most 11. Suppose no interior vertex is adjacent to three vertices of the outer cycle. Then any proper 3-coloring of the subgraph induced by the outer cycle extends to a proper 3-coloring of \(G \).

Definition. The graph \(H^* \) is the graph on 12 vertices formed by taking the 11-cycle \(v_0, v_1, v_2, ..., v_{10} \) and adding an additional vertex \(v \) adjacent to \(v_0, v_1, \) and \(v_6 \).

Definition. Let \(G \) be a plane graph and \(D \) the boundary cycle of its outer face. Then we say that a vertex \(v \) of \(G \) is *interior* if \(v \) is not on \(D \).
Assume that G is a counterexample with the minimum number of vertices and that G has the minimum number of edges among the counterexamples with $|V(G)|$ vertices. Let $D = d_1d_2,...,d_m, m \leq 11$ be the boundary cycle of the outer face f_0 of G. We can now immediately see several structural properties of G.

(P1) Every internal vertex of G has degree at least 3.
(P2) G is 2-connected.
(P3) G has no separating cycle of length at most 10.
(P4) Every separating cycle of G of length 11 has one side of the separation that is exactly one vertex with three neighbors on the cycle.
(P5) D has no chord.

2.3 Reducible Preliminaries

Our strategy at this point is as follows: we show a number of structures that cannot exist in a minimal counterexample and then use a discharging argument based on Euler’s Formula to show that one of them must appear. In this section we provide several lemmas and small reducible configurations that will make handling the long list of larger reducible configurations possible. The following two lemmas and their corollary will be used to show that a reduction is valid; that is, after making a
particular identification, the resulting graph satisfies the conditions of the theorem so we may apply induction.

Lemma 2.3.1. Let G be a plane graph satisfying the conditions of the theorem as well as $(P3)$ and $(P4)$. Let v_0, v_1, v_2, v_3, v_4 be the vertices in a path P in order with v_1, v_2, v_3 interior vertices and not both v_0 and v_4 on D. Let U be a set of vertices containing v_1, v_2, v_3 and not v_0 or v_4. Further, suppose there is another path, Q between v_0 and v_4 disjoint from P and of length ≥ 4 such that not all neighbors of v_1, v_2, v_3 are contained in the cycle formed by the union of these two paths, and that any path between v_0 and v_4 of length at most 6 and internally disjoint from P either forms a separating cycle when completed by P or contains a vertex of U. Then either the graph formed by identifying v_0 and v_4 and deleting the vertices of U satisfies the conditions of the theorem or there is a path, R in G of length 7 between v_0 and v_4 such that after identifying v_0 and v_4 R is an eared 7-cycle.

Proof. Let H be the graph formed after identifying v_0 and v_4. Then H must violate the conditions of the theorem. If H has a cycle of length at most 6, that must come from a path of length at most 6 between v_0 and v_4, but such a path gives a separating cycle of length at most 10 when joined with P, so cannot exist.

Let d_0 be the distance between v_0 and the outer cycle and d_1 the distance between v_4 and the outer cycle. Let x_0 and x_1 be the nearest neighbors in the outer cycle to v_0 and v_4 respectively.

If $d_0 + d_1 \leq 1$, then the cycle formed by taking P with x_0, x_1 and the path between them in the outer cycle is separating, so has length at least 11, so the corresponding path in the outer cycle has length at least 6. Since this is true on either side, the total length of the outer cycle is at least 12 which is impossible.

Suppose after identification we have a subgraph isomorphic to H^*. Then without loss of generality, either v_0 has a neighbor with two edges to the outer cycle or v_0 itself does. Suppose v_0 has two neighbors in the outer cycle, c_0 and c_1. Then consider
the cycle formed by the path $c_0v_0Pv_4x_1$ and completed by the outer cycle. This is
separating, so has length at least 11, so the path in the outer cycle has length at least
5. On the other side, the cycle formed by $c_1v_0Pv_4x_1$ and the outer cycle separates
at least two vertices of Q, so must have length at least 12, so the path in the outer
cycle has length at least 6. Since the path between c_0 and c_1 has length at least 1,
the outer cycle has length at least 12 which is a contradiction.

□

Lemma 2.3.2. Let G be a graph satisfying the conditions of the theorem as well as
properties three and four above. Let v_0, v_1, v_2, v_3, v_4 be consecutive vertices in a path
P with v_1, v_2, v_3 all interior and not both v_0 and v_4 on D. Suppose v_0 and v_1 are both
adjacent to the same vertex x and v_2 and v_3 are both adjacent to the same vertex y.
Suppose that $xv_1v_2v_3v_4$ is not part of the boundary of a face of length at most 10.
Finally suppose that if Q is a path between v_0 and v_4 of length at least 7 that does not
pass through v_1, v_2, v_3, or x, then the cycle $v_0Qv_4Pv_0$ separates x and y in G. Then
the graph formed by identifying v_0 and v_4 and deleting v_1, v_2, v_3 satisfies the conditions
of Theorem 2.2.1.

Proof. Let H be the graph formed by the identification. We show first that H has
no new cycle of length at most 7. Such a cycle must correspond to a path of length
at most 7 in G between v_0 and v_4. It must then separate x and y from one another
unless it passes through x. If it passes through x, it either separates some other
vertex from y or forms the boundary of a face with $xv_1v_2v_3v_4$ of length at most 10
which is impossible by assumption. If it passes through x and separates some other
vertex, this gives a separating cycle of length at most 10 which violates property 3.
Otherwise, it gives a separating cycle of length at most 11 which, by property 4 must
be isomorphic to H^*. But then the face of H^* containing either $v_0v_1v_2y$ or $xv_1v_2v_3v_4$
would be an eared 7-cycle in G which is forbidden.

We show next that the total distance between v_0 and v_4 and the outer cycle is at
least 3. Suppose v_0 is on the outer cycle and v_4 is at distance at most 2 from t, a vertex on the outer cycle. Then the length of the outer cycle between v_0 and t on the side with y must be at least 6 (since we cannot have an 11 cycle that separates y as shown in the previous paragraph). Similarly, the length of the outer cycle between v_0 and t on the side with x must be at least 6 since it either passes through x and so must give a cycle of length at least 11 or separates x and so must give a cycle of length at least 12. In either case, the length of the outer cycle is then at least 12. The analysis is identical for v_4 on the outer cycle and v_0 at distance at most 2 from the outer cycle and for each a distance 1 from the outer cycle.

We show next that the coloring of the outer cycle is still proper. In order for the coloring to no longer be proper, we must have at least one of v_0 and v_4 on the outer cycle and the other at distance at most 1 away from it which is impossible.

Finally, we need to show that no vertex is now adjacent to three vertices of the outer cycle. If the vertex in H adjacent to three vertices of the outer cycle is not the new vertex, then it must be a neighbor of either v_0 or v_4 and the other must be on the outer cycle, so one is distance 2 from the outer cycle and the other is on it which is impossible. If the new vertex is adjacent to three vertices of the outer cycle, then v_0 and v_4 must both be adjacent to the outer cycle which is impossible.

So H satisfies the conditions of the theorem. □

Corollary 2.3.3. Let G be a graph satisfying the conditions of the theorem as well as properties three and four above. Let v_0, v_1, v_2, v_3, v_4 be internal vertices, consecutive in a path P. Suppose v_0 and v_1 are both adjacent to the same vertex x and v_2 and v_3 are both adjacent to the same vertex y with x and y internal vertices. Finally suppose that if Q is a path between v_0 and v_4 that does not pass through $v_1, v_2, v_3, or x$, then the cycle $v_0Qv_4Pv_0$ separates x and y in G. Then the graph formed by identifying v_0 and v_4 and deleting v_1, v_2, v_3, x satisfies the conditions of Theorem 2.2.1.

Proof. We first delete all the edges incident with x except those going to v_1 and v_0. 26
This new graph H satisfies all the same properties of the theorem and has no new separating cycles. Further, if $xv_1v_2v_3v_4$ is part of the boundary in H of a face of length at most 10, that boundary must actually contain $v_0xv_1v_2v_3v_4$, so $v_0v_1v_2v_3v_4$ along with this face gives a separating cycle of length 9 in G. By Lemma 2.3.2 applied to H, deleting $v_1v_2v_3$ and identifying gives a graph satisfying the properties of the theorem. We can then delete x and continue to get a graph satisfying the conditions of the theorem. □

Lemma 2.3.4. Let v_0, v_1, v_2, v_3 be consecutive vertices along a path in G. Further, let x be adjacent to v_1 and v_2 and let both v_1 and v_2 have degree three. Then any coloring in which v_0 and v_3 have different colors extends to v_1 and v_2.

Proof. We may assume v_0 is colored 1 and v_3 is colored 2. If x is colored 1, color v_2 and then v_1. If x is colored 2, color v_1 and then v_2. If x is colored 3, color v_1 2 and v_2 1. □

We make use of the following definition from [10]:

Definition. Let $v_0, v_1, ..., v_5$ be consecutive vertices along the boundary of a face in which v_1, v_2, v_3, v_4 all have degree 3. Let x be adjacent to both v_1 and v_2 and y be adjacent to v_3 and v_4. Then we say that $v_0, ..., v_5, x, y$ forms a tetrad.

(P6) G has no tetrad.

Proof. Suppose that $v_0, ..., v_5, x, y$ is a tetrad. Then identify x and v_5 and delete $v_1, ..., v_4$. Then by Corollary 2.3.3 and induction the resulting graph is three colorable. So we need to show that the coloring extends to G. Color v_1, then v_2. Then the color
on v_2 is different from that of x, so is different from that of v_5, so we can color v_1 and v_4 by Lemma 2.3.4. □

We now consider a number of larger subgraphs that must be excluded from G. For the sake of notation and simplicity we present the following definitions:

Definition. A configuration (G, f, b) consists of a graph G along with a map $f : V(G) \to \mathbb{Z}$ and a map $b : V(G) \to \{0, 1\}$ with $f(v) \geq \deg(v)$.

We say that a graph G includes a configuration (H, f, b) if G contains a subgraph G' isomorphic to H with isomorphism σ such that if $v \in V(G')$ with $b(\sigma(v)) = 0$ then $\deg(v) = f(\sigma(v))$ and if $b(\sigma(v)) = 1$ then $\deg(v) \geq f(\sigma(v))$. A graph contains a configuration (H, f, b) if it includes that configuration and the corresponding isomorphism is the identity. We represent configurations by drawings of graphs where a vertex v is filled in if $b(v) = 0$ and open if $b(v) = 1$. We represent $f(v)$ by the number of edges or half-edges incident with v in the drawing.

(P7) If G contains the configuration corresponding to the diagram on the left of Figure 2.3 with v_0, v_1, \ldots, v_6 interior vertices, then it contains either the configuration in the center of Figure 1, the configuration on the right of Figure 2.3, or the configuration in the center of Figure 2.3 with u_3 of degree at least 3 and one of t_2, u_1, u_2, u_3 on the outer face.

Proof. We identify v_0 with t_2 and delete v_4, v_5, v_6. By Lemma 2.3.1, the resulting graph satisfies the conditions of the theorem unless there is a path of length 7 between v_0 and t_2 with triangles that become a distance 2 apart after identification.

If the resulting graph satisfies the conditions, we can color it. Then color v_4, then v_5 and v_6 by Lemma 2.3.4. So we must have a path of length 7 between v_0 and t_2 with triangles that become distance 2 apart after the identification. Suppose the path is $t_2, u_1, u_2, u_3, u_4, u_5, u_6, v_0$. Then u_3 is adjacent to t_1. So the triangles cannot be on
the edge u_2u_3 or u_3u_4. We will show later (see Configuration 2 below) that v_0 is not in a triangle, so we cannot have a triangle on v_0u_6. So the only remaining option is on u_5u_6 and u_1t_2. Note that t_1 must be degree 3.

We now identify u_3 with v_3 and delete $v_6v_5v_4$, and t_1. Such a graph satisfies the conditions of the theorem unless there is a path of length 7 between v_3 and u_3 with triangles distance 2 apart after identification. If we can color the resulting graph, color v_4, then v_6, then v_5 and t_1 by Lemma 2.3.4. So we must have the path of length 7 and triangles distance 2 apart. Similar analysis to the above shows that one of the triangles must be on the edge u_1u_2.

If u_3 has degree at least 4, then this is exactly the middle configuration. Otherwise, we identify u_2 with v_0 and delete u_3,t_1,t_2,v_4,v_5,v_6. By assumption u_1 and t_2 are not on the outer cycle, so by Lemma 2.3.1 the resulting graph satisfies the conditions of the theorem unless there is a path of length 7 with close triangles after identification. But the only way this can happen is exactly the configuration on the right of Figure 2.3. So the resulting graph must be three colorable. Then color u_3,t_2,v_4,v_5 and then t_1 and v_6 by Lemma 2.3.4.

We include a list of 16 configuration diagrams which cannot be contained in G.

\[\]
Note that configurations 7 and 8 can be found in [10] as reducible configurations in the context of their similar theorem. In the next section we will handle each of these individually, but they are included together here for reference.

Figure 2.4: Configurations 1 through 9
Figure 2.5: Configurations 10 through 16
2.4 Reducing the Reducible Configurations

We now describe the reductions for the configurations presented in Figures 2.4 and 2.5.

![Figure 2.6: Configuration 1](image)

Configuration 1

G does not contain the configuration in Figure 2.6 with v_0 through v_6 interior vertices.

Proof. Suppose otherwise. Then delete v_1, v_2, v_5, and v_6 and add edges v_0v_3 and v_0v_4. We argue that this graph satisfies the properties of the theorem so that we may apply induction.

First, if there is now a cycle of length 4 through 6, it must come from a path between v_0 and v_3 (or equivalently v_0 and v_4) of length at most 5, which would give a separating 8 cycle in the original graph. A new 7 cycle would similarly give a separating 9 cycle. We do create a new triangle, but the only incident cycles that might be of length 7 would need to use the path $t_2v_4v_3t_1$, so if they are of length 7 are eared 7-cycles in G.

Second, we cannot have created a chord in the outer cycle since the only edges we added were between interior vertices, and similarly we cannot have made any interior vertex adjacent to three vertices of the outer cycle.
So by induction, we can now color the graph except for $v_1, v_2, v_5,$ and v_6. But v_0 and v_4 are different colors, so by Lemma 2.3.4 we can color v_5 and v_6 and similarly since v_0 and v_3 are different colors we can color v_1 and v_2. \(\Box\)

![Figure 2.7: Configuration 2](image)

Configuration 2

G does not contain the configuration in Figure 2.7 with v_0 through v_6 interior vertices.

Proof. We delete $v_0, v_1, v_2, v_5,$ and v_6 and identify t_1 with v_3 and t_2 with v_4. We note that either identification still gives a graph that satisfies the conditions of the theorem by Lemma 2.3.2. So the only possible problems must be a triangle on v_3v_4, but that cannot happen since it must come from a triangle on t_1t_2 which would give a four cycle.

So we can color the graph except for $v_0, v_1, v_2, v_5,$ and v_6. Color v_0. Then v_0 is colored differently from v_3 and v_4, so by Lemma 2.3.4 we can color v_1 and v_2 as well as v_5 and v_6. \(\Box\)

Configuration 3

G does not contain the configuration in Figure 2.8 with v_0 through v_6 interior vertices.
Proof. We delete v_0, v_1, v_2, v_5, and v_6 and identify t_1 and v_4. We check that the resulting graph satisfies the properties of the theorem.

First, we cannot have created a short cycle, since any new cycle of length at most seven comes from a t_1-v_4 path of length at most 7 which gives a separating at most 11 cycle. If it is a separating 11 cycle, it must be H^* which is impossible since then the seven cycle incident with v_4 and v_5 has ears. Then by Lemma 2.3.1, we can color the resulting graph.

Then we color in order v_2, v_1, v_0 and not that v_0 is colored differently from v_4, so by Lemma 2.3.4 we can color v_5 and v_6. □

Configuration 4

G does not contain the configuration in Figure 2.9 with v_0 through v_6 interior vertices.

Proof. We delete v_0, v_1, v_2, and v_6 and identify t_1 and v_5. We check that the resulting graph satisfies the properties of the theorem.

First, we cannot have created a short cycle, since any new cycle of length at most seven comes from a t_1-v_5 path of length at most 7 which gives either a t_1-t_3 or t_1-t_4 path of length at most 6 which in turn gives a separating at most 10 cycle. Then by Lemma 2.3.1, we can color the resulting graph.
We color v_6 then v_0. If the color of v_0 is not the same as the color of v_3, then the graph is colorable by Lemma 2.3.4. Further, if v_0 or v_3 is colored the same as t_1, then we can easily color v_1 and v_2. So neither is colored the same as t_1.

So without loss of generality, t_1 and v_5 are both colored 1 and v_3 is colored 2. We know that v_0 must be colored 2 and v_6 cannot be colored 1, so v_6 must be forced to be 3 and t_2 must be colored 1. Then t_3 is colored 2. Finally, v_4 must be colored 3 and t_4 must be colored 2.

But then we change the coloring on $v_4, v_5, v_6,$ and v_0. Specifically, color v_4 with 1, v_5 with 3, v_6 with 1, then color v_2, v_1, and finally v_0 in order.

\(\square \)

Configuration 5

G does not contain the configuration in Figure 2.10 with $v_0, ..., v_6, t_1$ interior vertices.

Proof. We delete $v_0, v_1, v_2, v_4, v_5, v_6, t_1$, and t_3 and identify $t_2, t_5,$ and v_3 together. Note that t_3 is an interior vertex since otherwise 2 of its neighbors would be on the outer cycle. Any single identification of this set would give a graph that satisfies the conditions of the theorem by Lemma 2.3.2 or Lemma 2.3.1 except that there could
be a path of length 7 with triangles that become a distance two apart between \(t_5 \) and \(v_3 \).

If there is such a path of length 7, that gives a separating 11 cycle which must be \(H^* \). So we have a path \(u_1, u_2, u_3, u_4, u_5, u_6 \) with an edge \(t_4u_3 \). For the graph after identification to not satisfy the conditions of the theorem, we must have two triangles on this path that become a distance 2 apart after identification. The edge \(t_5u_1 \) cannot have a triangle since that would give a pair of ears with the triangle on \(t_3v_5 \). Similarly, the edges \(u_2u_3, u_3u_4, \) and \(v_3u_6 \) cannot have triangles since they would give ears with the triangle \(t_4v_5v_4 \). So the only edges that could have triangles are \(u_1u_2, u_6u_5 \), and \(u_4u_5 \). But triangles on these edges cannot form ears after identification, so the resulting graph does not have any objectionable short cycles.

We then color the resulting graph by induction. Color \(t_2, v_3, t_5 \) all 1, and without loss of generality, we can color \(t_1 \) 2. If \(t_4 \) is colored 1, we can color \(v_4, 2, v_5, 3, t_3, 2, v_6, 1, \) and \(v_0, 3. \) Then we color \(v_1 \) and \(v_2 \) by Lemma 2.3.4.

If \(t_4 \) is colored 2, we color \(v_4, 3, v_5, 1 \) and then can color \(v_0, v_6, t_3 \) and then \(v_1 \) and \(v_2 \).

If \(t_4 \) is colored 3, we color \(v_4, 2, v_5, 1 \) and then can color \(v_0, v_6, t_3 \) and then \(v_1 \) and
Configuration 6

Figure 2.11: Configuration 6

G does not contain the configuration in Figure 2.11 with $v_0, ..., v_6$ interior vertices.

Proof. We identify t_1 with v_3 and delete $v_0, v_1, v_2, v_4, v_5, v_6$. By Lemma 2.3.1, the resulting graph satisfies the conditions of the theorem unless there is a path of length 7 between t_1 and v_3.

If the resulting graphs satisfies the conditions, we can color it. Then color in order v_4, v_5, v_6, v_0, then v_1 and v_2 by Lemma 2.3.4. So we must have a path of length 7 between t_1 and v_3 which gives a separating 11-cycle. Suppose the path is $t_1, u_1, u_2, u_3, u_4, u_5, u_6, v_3$. Then u_3 is adjacent to t_2. Note that t_2 must have degree 3.

Suppose v_3 has degree 3. Then delete $v_0, v_1, v_2, v_3, v_4, v_5, v_6, t_2$ and color the remaining graph. We may assume t_4 is colored 1. If we can color v_0 1, then we color t_2, then $v_1, v_2, v_3, v_4, v_5, v_6$ in order. So we cannot color v_0 1, so t_1 is colored 1. Similarly, if we could color v_4 1, we then color $v_3, v_2, t_2, v_1, v_0, v_6, v_5$ in order. So t_3 is also 1. If the neighbor of v_3 is not 1, then we color v_4 1, then color $v_4, v_2, t_2, v_1, v_0, v_6, v_5$ in order. So t_3 is also 1. If the neighbor of v_3 is not 1, then we color v_4 1, then color $v_4, v_2, t_2, v_1, v_0, v_6, v_5$ in order. So t_3 is also 1. If the neighbor of v_3 is also 1. Then
color \(t_2 \) a color other than 1, without loss of generality, we can say 2. Then color \(v_0 \) and \(v_3 \) 2 and \(v_4 \) 3. Then \(v_1 \) and \(v_2 \) are colored 1 and 3, and we can color \(v_6 \) 3 and \(v_5 \) 2.

So \(v_3 \) must have degree at least 4. Then identify \(u_3 \) and \(v_4 \), and delete \(t_2, v_0, v_1, v_2, v_5, v_6 \). Either the resulting graph is three colorable or there is a path of length 7 between \(u_3 \) and \(v_4 \). But such a path must create an 11 cycle that separates both the neighbors of \(v_3 \) from \(v_1 \) and \(v_0 \), so cannot exist by Property 3. So we can color the resulting graph. We may assume \(u_3 \) and \(v_4 \) are colored 1 and \(v_3 \) is colored 2.

If \(t_1 \) is not colored 3, then color \(v_0 \) 3, color \(t_2 \), then color \(v_1, v_2 \) and \(v_5, v_6 \) by Lemma 2.3.4. So \(t_1 \) is colored 3. So color \(v_0 \) 2, \(t_2 \) 2, then \(v_1 \) 1, \(v_2 \) 3, then color \(v_5, v_6 \) by Lemma 2.3.4.

\[\square \]

![Figure 2.12: Configuration 7](image)

Configuration 7

\(G \) does not contain the configuration in Figure 2.12 with \(v_0, ..., v_7 \) interior vertices.

Proof. Delete \(v_0, v_1, v_3, v_4, v_5, \) and \(v_7 \) and identify \(v_2 \) and \(v_6 \). Then the resulting graph satisfies the conditions of the theorem by Lemma 2.3.2, so is three colorable. Then
color v_3 and v_1 (which must be different colors than v_6, so by Lemma 2.3.4, we can color v_0, v_7 and v_4, v_5. \hfill \qed

![Figure 2.13: Configuration 8](image)

Configuration 8

G does not contain the configuration in Figure 2.13 with $v_0, ..., v_7$ interior vertices.

Proof. Delete $v_0, v_1, v_2, v_3, v_4, v_5, v_6, v_7,$ and v_8 and identify t_1 and t_3. Then by Lemma 2.3.2, the resulting graph is three colorable. We may assume that t_1 and t_3 are both colored 1.

Suppose t_2 is colored 1. If t_4 is colored 1 as well, color v_6 3, then color v_5, v_4, v_3, v_2, v_1. Then v_1 is colored 2, so by Lemma 2.3.4 we color v_0 and v_7. If t_4 is colored 2, then we color v_6 1, v_5 3, and v_4 2. Then color v_3, v_2, v_1. Since v_1 is not colored 1 we can then color v_0 and v_7.

Suppose t_2 is colored 2. Then v_1 is colored 2, v_2 3, and v_3 1. If t_4 is colored 1, then by symmetry this is one of the previous cases. Otherwise, we can color v_5, then v_4 and v_6. Then v_6 is colored 1, so we can color v_0 and v_7. \hfill \qed

Configuration 9

G does not contain the configuration in Figure 2.14 with $v_0, ..., v_8$ interior vertices.
Proof. Identify t_2 and v_6 and delete $v_0, v_1, v_2, v_3, v_4, v_5, v_7$, and v_8. By Lemma 2.3.2 and induction, the resulting graph is three colorable. We now extend the coloring to G.

Color t_2 and v_6 both 1. Then color v_7. Without loss of generality, we assume v_7 is colored 2. If t_1 is colored 1, color v_1 3, then color v_2, v_3, then v_4, v_5 and v_0, v_8. If t_1 is colored 2 or 3, then color $v_2, v_1, v_3, v_4, v_5, v_0, v_8$ in order, noting that the color on v_1 is always 1 and that the color on v_3 is never 1. \(\square\)
G does not contain either the configuration in Figure 2.15 with v_0, \ldots, v_{12} interior vertices or the configuration in Figure 2.15 with v_0, \ldots, v_{12} interior vertices and v_{11} degree 3.

Proof. Identify $v_2, v_6,$ and v_{11} and delete all the other v_i. We note first that there cannot be paths of length 7 between v_{11} and v_6 with triangles a distance two apart after identification. If there were such a path and v_{11} is in a triangle, then the resulting H^* has an eared seven cycle. If v_{11} is degree 3, then there is nowhere on the path for the violating triangles to go without creating ears. So by Lemma 2.3.1, the resulting graph satisfies the properties of the theorem, so is three colorable.

We now show that a coloring extends. Color $v_2, v_{11},$ and v_6 all 1. Then color v_1 and v_3, then color v_7 and v_8. Then v_3 is not colored 1, but v_{11} is, so we can color v_{10} and v_9. Similarly, v_6 is colored 1 but v_3 is not, so we can color v_4 and v_5. And finally, v_1 is not colored 1, so we can color v_0 and v_{12}.

G does not contain the configuration in Figure 2.16 with v_0, \ldots, v_{12} interior vertices.
Proof. Identify t_1 with v_5 and t_0 with t_4, then delete all the other v_i. Then by Lemma 2.3.2, the resulting graph satisfies the properties of the theorem, so is three colorable.

We now show that a coloring extends. Without loss of generality, color t_1 and v_5 1. Suppose t_0 and t_4 are colored 1. If t_5 is colored 1 as well, color v_{10} 2, then color $v_{11}, v_{12}, v_0, v_1, v_2$ (then v_2 is colored 3. Then color v_6, v_7, so we can color v_8, v_9 and v_3, v_4 by Lemma 2.3.4. If t_5 is colored 2, color v_2 3, v_1 2, v_0 3, then color v_{11} 3, v_{12} 1, v_{10} 2. Then we can again color v_6v_7 then v_8, v_9 and v_3, v_4.

So we have t_0 and t_4 colored 2. Then v_0 is colored 1 and v_2 is colored 2. If t_5 is colored 1, we color v_{11} 3, v_{12} 2, and v_{10} 1. If t_5 is colored 2, we color v_{11} 1, v_{12} 3, and v_{10} 3, and if t_5 is colored 3, we color v_{11} 1, v_{12} 2, and v_{10} 3. In any case, v_{10} and v_2 have different colors, so we can color v_6 then v_7, then v_8, v_9, and v_3, v_4.

\[\Box\]

![Figure 2.17: Configuration 12](image)

Configuration 12

G does not contain the configuration in Figure 2.17 with v_0, \ldots, v_{12} interior vertices.

Proof. Identify $t_2, t_4,$ and v_6, then delete all the other v_i. Then by Lemma 2.3.2, the resulting graph satisfies the properties of the theorem, so is three colorable.
We now show that a coloring extends. Without loss of generality, \(t_2, t_4, \) and \(v_6 \) are colored 1. Suppose \(t_1 \) is colored 1. If \(t_3 \) is not colored 1, then color \(v_7, \) then color \(v_8 \) (which must be colored 1. Then we can color \(v_{11}, v_2, v_3 \) and then \(v_{10}, v_2. \) Then we can color \(v_4, v_5, v_0, v_{12}. \)

If \(t_3 \) is colored 1, then color \(v_{11}, v_2, v_3, v_8, v_9. \) Then \(v_{10} \) will be colored 1. Color \(v_1, v_3, \) then color \(v_2, v_3, \) then \(v_4, v_5, v_0, v_{12}. \)

So we may assume \(t_1 \) is not colored 1, so 2. Then color \(v_2, v_3, v_1 \) (so \(v_1 \) is 1 and \(v_3 \) is 2). Then color \(v_7, v_8. \) If \(v_8 \) is a 1, then color \(v_{10}, v_9, v_{11}, \) and then \(v_0, v_{12}, v_4, v_5. \) If \(v_8 \) is not a 1, then color \(v_9 \) and note that none of \(v_3, v_8, v_9 \) are 1, so we can color \(v_{10} \) 1. Then color \(v_9, \) then \(v_0, v_{12}, v_4, v_5. \)

\[\square \]

Figure 2.18: Configuration 13

Configuration 13

\(G \) does not contain the configuration in Figure 2.18 with \(v_0, ..., v_{12} \) interior vertices.

Proof. Identify \(t_2, t_4, \) and \(v_6, \) then delete all the other \(v_1. \) Then by Lemma 2.3.2, the resulting graph satisfies the properties of the theorem, so is three colorable.

We now show that a coloring extends. Without loss of generality, \(t_2, t_4, \) and \(v_6 \) are colored 1. Suppose \(t_5 \) is colored 1 and \(t_3 \) is colored 1. Then color \(v_{12}, 2, \) and color
then color v_{10} 1, v_2 3, and then color v_3, v_4, v_5, v_0, v_1. So suppose t_3 is not colored 1. Then color v_7 and v_8 will be colored 1. Then color v_2 2, and color $v_3, v_{10}, v_9, v_{11}, v_{12}$. Then v_{12} will be colored 3, so we can color v_0, v_1, v_4, v_5.

So we may assume t_5 is colored 2. Then we color v_{11}, v_{12}, v_9 with v_{12} as 1 and v_9 as 2. We then have v_6 and v_9 different colors, so we can color v_7 and v_8. Then color v_{10}, v_3, v_2, then v_4, v_5, v_0, v_1.

\[\square\]

![Figure 2.19: Configuration 14](image)

Configuration 14

G does not contain either the configuration in Figure 2.19 with v_0, \ldots, v_{12} interior vertices or the configuration in Figure 2.19 with v_0, \ldots, v_{12} interior vertices and v_{12} degree 3.

Proof. Identify t_2, t_4, and v_6, then delete all the other v_i. Then by Lemma 2.3.2, the resulting graph satisfies the properties of the theorem, so is three colorable.

We now show that a coloring extends. Without loss of generality, t_2, t_4, and v_6 are colored 1. Color v_{12}. If v_{12} is colored 1, then color v_{11}, v_9, v_7 and v_8 (by Lemma 2.3.4), then v_{10}, v_3, v_2, then we can color v_0, v_1, v_4, v_5. So we may assume v_{12} is colored
2. Then color v_{11}, v_9 (so v_9 is colored 2). If t_3 is colored 1, color v_7, v_8, v_{10} (then v_{10} is colored 1). Then color $v_2, 3$ and $v_3, 2$, then color v_0, v_1, v_4, v_5.

So we may assume t_3 is not colored 1. Then color v_7 and then we can color v_8 with 1. Then color v_{10}, v_3, v_2 and v_2 will be colored 3, so we can color v_0, v_1, v_4, v_5.
\[\square\]

Figure 2.20: Configuration 15

Configuration 15

G does not contain the configuration in Figure 2.20 with $v_0, ..., v_{12}$ interior vertices

Proof. Identify t_1 with t_4 and then t_2 with v_6 then delete all the other v_i. Then by Lemma 2.3.2, the resulting graph satisfies the properties of the theorem, so is three colorable.

We now show that a coloring extends. Without loss of generality, t_2, and v_6 are colored 1. Suppose first that t_1 and t_4 are also colored 1. Then if t_3 is not colored 1, color v_7, v_8 which will be 1. If t_5 is also 1, color v_1 with 3, then $v_0, v_{12}, v_{11}, v_9, v_{10}$ which will be 2, so we can color v_2, v_3, v_4, v_5. If t_5 is not 1, so 2, then color $v_0, 3, v_1, 2$, and v_{12} 1. Then color $v_{11}, 3, v_9, 2, v_{10}, 3$, so v_2, v_3, v_4, v_5 can be colored.

If t_3 is colored 1, we color $v_0, v_1, v_{12}, v_{11}, v_9, v_8, v_7, v_{10}$. Note that v_{10} is colored 1, so since v_1 is not colored 1, color v_2, v_3, then v_4, v_5.

45
So we may assume t_1 and t_4 are not colored 1, so are colored 2. If t_5 is a 1, then v_0 is 3, v_1 is 1, v_{12} is 2. So we can take v_{11} is 1, v_9 is 3, so we can color $v_7, v_8, v_{10}, v_3, v_2$, then v_4, v_5. If t_5 is a 2, we color v_1 3, v_0 1, v_{12} 3, then v_{11} is colored 1, v_9 3, then we can color v_7, v_8 and v_{10} is not colored 3, so is different from v_1. Then we can color v_2, v_3, so v_4, v_5.

So we may assume t_5 is colored 3. Then v_1 is 3, v_0 is 1, v_{12} is 2 then we can color v_{11} 1, v_9 3, then we can color v_7, v_8 and v_{10} is not colored 3, so is different from v_1. Then we can color v_2, v_3, so v_4, v_5.

\[\square\]

![Figure 2.21: Configuration 16](image)

Configuration 16

G does not contain either the configuration in Figure 2.21 with $v_0, ..., v_{12}$ interior vertices or the configuration in Figure 2.15 with $v_0, ..., v_{12}$ interior vertices and v_1 degree 3.

Proof. Identify t_2, t_4, and v_6, then delete all the other v_i. Then by Lemma 2.3.2, the resulting graph satisfies the properties of the theorem, so is three colorable.

We now show that a coloring extends. Without loss of generality, t_2, t_4, and v_6
are colored 1. Color \(v_1 \). If \(v_1 \) is colored 1, then just color in order \(v_7, v_8, v_9, v_{11}, v_{10}, v_3, v_2, v_4, v_5, v_0, v_{12} \). So \(v_1 \) is colored 2. Then color \(v_{11} \) with 3, \(v_9 \) with 2, then we can color \(v_7 \) and \(v_8 \), so we can color \(v_{10} \) something other than 2 (so not the same as \(v_1 \)). So we can color \(v_2, v_3 \), and so \(v_4, v_5 \). Since \(v_1 \) and \(v_{11} \) are not the same color, we can then color \(v_0, v_{12} \). □

2.5 Discharging

To complete the proof we show that there is no planar graph with all the properties of the minimal counterexample from the previous section. To do so, we consider an immediate consequence of Euler’s Formula:

\[
\sum_{v \in V(G)} (\deg(v) - 4) + \sum_{f \in F(G)} (|f| - 4) = -8 \tag{5}
\]

To each vertex we assign a charge equal to its degree minus four, to each interior face we give a charge equal to the length of its bounding cycle minus four, and to the outer cycle we give a charge equal to its length plus four. Then the total charge in the graph is exactly zero.

Definition. An interior vertex is said to be bad if it has degree three and is incident with a triangle.

We now provide a set of rules in the same vein as [10] to move the charge around after which each interior face and vertex will have nonnegative charge and the outer face will have strictly positive charge.

(R1) Each vertex sends 1/3 charge to each incident face of size three.

(R2)

a) Each non-triangular interior face sends 2/3 charge to each incident interior vertex of degree three in a triangle and to each incident vertex of degree 2.

b) Each non-triangular interior face sends 1/3 charge to each incident interior vertex of degree three not in a triangle.
c) Each non-triangular interior face sends 1/3 charge to each incident interior vertex of degree four in two triangles adjacent to the same face.

d) Each non-triangular interior face sends 1/3 charge to each incident interior vertex of degree four in a triangle not adjacent to the face.

(R3)

a) Each non-triangular interior face takes 1/3 charge from each incident vertex of degree five adjacent to two adjacent triangles or to one triangle not adjacent to the face.

b) Each non-triangular interior face takes 1/3 charge from each incident vertex of degree at least six.

c) Each non-triangular interior face takes 1/3 charge from each incident vertex of degree four on the outer face if it shares an edge with the outer face and 2/3 charge otherwise.

(R4) The outer face gives 4/3 charge to each incident vertex.

(R5) Each interior face in a structure as shown gives 1/3 charge as indicated in Figure 2.22.

(R6) Each interior face in a structure as shown gives 1/3 charge as indicated in Figures 2.23 and 2.24.

a) This face requires that either a have degree at least 4 or one of a, b, or c be on the outer face.

b) Here vertex a has degree at least 4.

We now need to check that each interior face and vertex have nonnegative charge and that the outer face has positive charge. Since the total charge in the graph stays the same after the application of any of these rules and started at exactly zero, this would provide a contradiction and show that there no minimum counterexample can exist.

For the outer face, the charge is $|f| + 4$ and it loses at most $4/3|f|$, so the total
charge is $4 - 1/3|f|$. Since f is at most 11, this is strictly positive.

Lemma 2.5.1. After applying the discharging rules, the charge on each vertex is at least 0.

Proof. Vertices of degree at least 6 start with charge $\deg(v) - 4$ and give away at most $1/3$ to each incident face, so at most $\deg(v)/3$ and so are left with $2/3 \deg(v) - 4$ charge which is at least 0.

Vertices of degree 5 start with charge 1. They can be incident with at most two triangles. If they meet no triangles, they end with 1 charge since none of the rules apply. If they meet one triangle, they give away 1/3 charge by rule 1 and 2/3 charge by rule 3 so are left with 0. If they meet two triangles, they give away 2/3 charge by rule 1 and 1/3 by rule 3, so are left with 0 charge.

Vertices of degree 4 start with no charge. Suppose first that they are interior. If they are incident with no triangles, none of the rules apply and they end with 0 charge. If incident with one triangle, they give away 1/3 by rule 1 but receive 1/3 by rule 2d so end at 0. If incident with two triangles, they give away 2/3 by rule 1 and then receive 2/3 by rule 2c so end with 0. If they are on the outer face, they receive 4/3 charge by rule 4, and give away at most 4/3 charge between rules 1 and 3c.

Vertices of degree 3 start with -1 charge. Suppose first that they are interior. If incident with no triangles, they receive 1/3 from each incident face by rule 2b so end at 0 charge. If incident with one triangle, they give away 1/3 by rule 1 and take 2/3 from each other incident face by rule 2a and end at 0. If they are on the outer face, they receive 4/3 by rule 4 and give away at most 1/3 by rule 1.

Vertices of degree 2 start with -2 charge. They can only be incident with the outer face, so take 4/3 by rule 4 and 2/3 by rule 2a and so end at 0. □

We now need to check the charge on each face. We begin with the internal faces. We note first that only faces of size 7 lose charge to rule 6. Further, a face can
lose to rule 5 at most once for each degree 4 vertex it has. Note further that those
degree 4 vertices do not take any other charge from the face, so degree four vertices
take at most 1/3 charge.

So for faces of size at least 12, each vertex takes at most 2/3 charge, but the face
starts with |f| − 4 charge, so the total charge is 1/3|f| − 4 ≥ 0.

For faces of size 11, by parity not every vertex can be a degree three in a triangle,
so at least one vertex only takes 1/3 charge, so the total charge is at least 11 − 4 −
20/3 − 1/3 = 0.

For faces of size 10, we note that 5 consecutive degree three vertices in a triangle
is a tetrad, so there can be at most 8 such vertices. So the total charge is at least
10 − 4 − 16/3 − 2/3 = 0.

For faces of size 9, we can have at most 7 vertices of degree three in triangles
without forming a tetrad. If both of the other vertices require 1/3 charge, the face
would then be negative. So the degree three vertices in triangles must be split 4 and
then 3, so we must have exactly Configuration 9.

For faces of size 8, we can have at most 6 bad vertices. We first look at faces
that would be negative without rule 5. Suppose there are 5 bad vertices. Then each
of the other vertices needs to take 1/3 charge or the face has nonnegative charge.
Such vertices have either two or zero incident triangular edges, but each bad vertex
is incident with exactly one triangular edge, so by parity this situation cannot exist.
So there must be six bad vertices split either three and three or four and two.

Suppose they split four and two. Then the four vertices must form triangles with
the two good vertices or else we have a tetrad. One of these good vertices must be
incident with a second triangle or else the face has nonnegative charge. So the graph
must be Configuration 8. If they split 3 and 3, we must again have one of the good
vertices draw charge from the face, so it must be involved in two triangles. This gives
Configuration 7.
We now consider the possibility of eight faces that give charge under rule 5.

Let the boundary of such a face, \(F \), be \(v_0, v_1, a, b, c, d, e, f \). Without loss of generality, we assume \(v_0 \) is the degree 4 vertex that is shared with the seven cycle to which the face gives charge and \(v_1 \) is the degree 3 vertex shared with the seven cycle. In this case, we say that \(v_1 \) supports the instance of rule 5. Note that for this face to be negatively charged, there must be at least 5 bad vertices. Also, not both of \(a \) and \(f \) can be degree 3 by Configuration 5.

Suppose there are 6 bad vertices. Then either \(a \) or \(f \) is not bad and the rest of the vertices are bad. But then we have 5 vertices in a row that are all bad, so we have a tetrad which is impossible.

So we must have exactly 5 bad vertices. For such a face to be negatively charged, each other vertex must take \(\frac{1}{3} \) charge (viewing a rule 5 application as the degree 4 vertex that is shared taking \(\frac{1}{3} \) charge).

Lemma 2.5.2. The face \(F \) gives at most once under rule 5

Proof. Suppose first that vertex \(f \) supports a second instance of rule 5. Then \(e \) must be degree 3 and the edge \(ed \) is in a triangle. Then not all of \(a, b, c, \) and \(d \) are bad (since we have exactly five bad vertices). If \(d \) is not bad, then all of \(a, b, c \) must be bad which is impossible since if \(b \) and \(c \) are in a triangle together, then \(v_1, a, b, c \) is a tetrad. So we may assume \(d \) is bad. If \(c \) is not bad, it must support another instance of rule 5. But \(b, d, e \) are all bad, so this is an instance of Configuration 5. If \(b \) is not bad, then either it supports another instance of rule 5 which is Configuration 5 or \(a \) is not bad. Finally, if \(a \) is not bad, then not all of \(b, c, d \) can be bad. So this case is impossible, so \(f \) cannot support a second instance of rule 5.

Next we suppose that \(a \) supports a second instance of rule 5. So then \(b \) is degree 3 and one of \(c, d, e, f \) is not bad. If any of \(c, d, e \) give under rule 5, they form Configuration 5 since the other two as well as \(b \) and \(f \) must be bad. If \(c \) is in two triangles,
all of d, e, f cannot be bad. Neither d nor e can be in two triangles if c and f are bad. And if f is in two triangles, then c, d, e cannot be all bad.

So either a or f is in two triangles and one of b, c, d, e supports another rule 5 and the rest of the vertices are bad.

Suppose a is in two triangles. If b supports another rule 5, then it is impossible for c, d, e, f to all be bad. If c supports another rule 5 and b is bad, not both of e and f can be bad. If d supports the rule 5 and b and c are bad, then not both of e and f can be bad. Finally, if e supports the rule 5 and f is bad, then not all of b, c, d are bad.

So we must have f in two triangles and a bad. If both b and c are bad, we have a tetrad with v_1 and a. If b supports the rule 5, then not all of c, d, e can be bad. If c supports the rule 5, then similarly not both of d, e can be bad. So it is impossible for this face to support multiple instances of rule 5 and still be negatively charged.

\[\Box\]

So we now have that f gives exactly once under rule 5. At least one of a and f is not bad. Suppose neither is bad. Then both are in triangles and the remaining vertices are bad. But this violates Configuration 12. So either a or f is bad.

Suppose a is bad and f is not bad. One of b, c, d, e is not bad. Note that if both b and c are bad, we have a tetrad (v_1, a, b, c). So we may assume one of b or c is not bad. Suppose it is b. Then b must be degree 4 in one triangle or degree 3 and cd must be a triangular edge. But this gives Configuration 10. So c must not be bad. Then c must be in two triangles and b, d, e all bad. But this is Configuration 11.

So we may assume a is not bad and f is bad. If b is not bad, then it is in two triangles and de is a triangular edge. But this is Configuration 13. If c is not bad, then it is degree three or degree four in a triangle and de is a triangular edge. But this is Configuration 14. If d is not bad, it must be in two triangles, but this is Configuration 15. Finally, if e is not bad, it must be degree three or degree four in a
triangle and cd a triangular edge, but this is Configuration 16.

So there is no such 8-face.

For faces of size 7 we note first that rule 5 cannot apply.

We consider a 7-face that gives under rule 6a, F. Suppose first that all the vertices are internal. Then, in the notation of that rule, a has degree at least 4, so takes no charge. If b has degree 3 and c has degree 4, then this face is exactly Configuration 4. If b has degree three and c has degree at least 5, then the total charge is $3 - 2/3 - 2/3 - 1/3 - 2/3 + 1/3 - 2/3 - 1/3 = 0$. If b has degree at least 4, the total charge is $3 - 2/3 - 2/3 - 1/3 - 2/3 - 1/3 - 1/3 = 0$.

So we may assume one of the vertices is on the outer cycle. If a is on the outer face and is degree 4, then either one of its neighbors is on the outer face or by rule 3c it gives $2/3$ charge back to f. In the latter case, the total charge is $3 - 2/3 - 2/3 - 1/3 - 2/3 - 1/3 - 2/3 - 1/3 = 0$. In the former, it gives $1/3$ charge back to f but one of its neighbors does not take $2/3$ charge, so the total charge is then $1/3$.

So we may assume a has degree 3. Then one of a, b, or c is on the outer face. If c is on the outer face, either it gives $2/3$ charge back to f by rule 3c or one of its neighbors on f is also on the outer face. If the former, the total charge is $3 - 2/3 - 2/3 - 1/3 - 2/3 + 2/3 - 1/3 - 1/3 = 0$. If the latter, c only gives $1/3$ charge back, but one of its neighbors no longer takes $2/3$ charge, so the total charge is $1/3$. So we may assume that c is not on the outer face. If b is on the outer face with degree 3, then a must be as well, so the total charge is at least 0. If b has degree at least 4 and is on the outer face, then it either provides $1/3$ charge if a is also on the outer face or provides $2/3$ charge. In either case, the total charge remains nonnegative. Finally, if a is on the outer face, then one of its neighbors is as well, so the total charge is again at least 0. So the face has nonnegative charge.

We now consider a 7-face giving under rule 6b. Again to avoid Configuration 4, either b or c has degree greater than drawn, so the total facial charge is positive.
We now consider 7 cycles giving under neither rule. We note that there can be
at most two bad vertices in a row without violating the conditions for seven cycles,
so there are at most 4 bad vertices. Similarly, we can see that there cannot be just
three bad vertices and four vertices that each take 1/3 charge by parity as in the case
for eight faces. So there must be exactly 4 bad vertices. Since we cannot have four
triangles incident with a seven face, we have either two or three.

If we have two triangles, let F be the face and its bounding cycle be a, v₀, v₁, b, c,
v₂, v₃ with the vᵢ in triangles.

Two of a, b, and c must each take 1/3 charge. Suppose first that a is in a triangle
not incident with F. If it has degree at least 5, then it gives back 1/3 charge by rule
3a, so the face has nonnegative charge. Otherwise, it has degree exactly 4 which is
Configuration 2. So a is not in a triangle.

If a has degree 3, then we may assume b also takes 1/3 charge. If b is degree 4 in
a triangle, then this is Configuration 3. If b is degree 3, then this is Configuration 5.
So a cannot take 1/3 charge.

Therefore, b and c both take 1/3 charge. If both are degree four vertices in
triangles, this is Configuration 1. So we may assume c has degree 3. Then by
Property 7 and rule 6 it receives 1/3 charge from a neighboring face. So F does not
have negative charge.

Finally, we consider the case of three triangles. Let F be such a face and let the
boundary cycle of F be a, v₀, v₁, v₂, b, v₃, v₄ with t₁ adjacent to v₀ and v₁, t₂ adjacent
to v₁ and v₂, and t₃ adjacent to v₃ and v₄.

At least one of a or b must take charge from the face, so we may assume it is
a. If a is degree 3, this is Configuration 4. So a is in a triangle. But then this face
receives charge by rule 5, so is not, in fact, negatively charged. If both a and b are in
triangles, then F receives charge twice by Rule 5, so again is not negatively charged.

Lastly, we need to check the charge of faces incident with the outer face. We
showed earlier that faces giving charge under rule 5 or rule 6 are nonnegative even if they are on the outer face, so we do not need to consider those faces.

We note that any face without degree 2 vertices either has two vertices that take nothing from the face since they are on the outer cycle or has a degree 4 vertex which then gives the face $1/3$ charge. So none of these faces are negative.

Therefore we need only consider faces with vertices of degree 2. Note that having a vertex of degree 2 means that there are two vertices on the outer face incident with the cycle that do not take any charge. For a face of size at least 8, that means that it loses charge at most $2/3(|F| - 2)$, so has charge left at least $|F|/3 - 8/3$. So if $|F| \geq 8$, it cannot be negative. So we may assume F is a seven-face.

If there is one vertex of degree 2, at most 3 of the remaining vertices are bad (since otherwise we have ears), so the total charge is at least 0. If there are two vertices of degree 2, at most two of the remaining vertices can be bad, so the total charge is at least 0.

If there are 3 vertices of degree 2, the rest of the outer cycle along with this cycle gives a separating ten cycle, so this is impossible. If there are 4 vertices of degree 2, we must have exactly H^*. Five vertices of degree 2 gives a chord in the outer cycle (unless G is exactly this seven cycle which similarly isn’t a problem).

So no face or vertex has negative charge and the outer face has strictly positive charge, so such a graph cannot exist.
CHAPTER III

ODD $K_{3,3}$ SUBDIVISIONS

3.1 Introduction

We discuss in this chapter a natural extension of Kuratowski’s Theorem with applications to matching theory and the study of Pfaffian orientations. As mentioned in Chapter 1, Kuratowski’s Theorem is a fundamental result at the heart of our understanding of planar graphs:

Theorem 3.1.1. A graph is planar if and only if it does not contain K_5 or $K_{3,3}$ as a subdivision.

It turns out that $K_{3,3}$ is the more important of these in some sense; for a sufficiently well-connected large graph, a classical result allows us to ignore K_5:

Theorem 3.1.2. A 3-connected graph is non-planar if and only if it either contains a subgraph isomorphic to K_5 or contains $K_{3,3}$ as a subdivision.

In the case of well-connected non-planar bipartite graphs, this raises an interesting question: when do such graphs contain $K_{3,3}$ in a bipartite way? We formalize this as follows.

Definition. Let G be a graph and H a subgraph of G isomorphic to a subdivision of $K_{3,3}$. Let v_1, v_2, \ldots, v_6 be the degree three vertices of H and for $i = 1, 2, 3$ and $j = 4, 5, 6$ let P_{ij} be the paths in H between v_i and v_j. We then refer to H as a hex or a *hex of* G, the vertices v_i as the *feet* of H, and the paths P_{ij} as the *segments* of H. A segment is *odd* if it has an odd number of edges, and *even* otherwise. A hex H is *odd* if every segment of H is odd.
So our question is, given a non-planar bipartite graph, when does it contain an odd hex? If G is a bipartite graph with bipartition (A, B), this is equivalent to finding three vertices of A, three vertices of B and the appropriate 9 vertex-disjoint paths between them. In a sense, then, this is a natural way to find one bipartite graph inside another. The answer to this question is the main theorem of this section:

Theorem 3.1.3. Every internally 4-connected bipartite non-planar graph has an odd hex.

We say that a bipartite graph G is **internally 4-connected** if it is 3-connected, has at least five vertices, and there is no partition (A, B, C) of $V(G)$ such that $|A|, |B| \geq 2$, $|C| = 3$ and G has no edge with one end in A and the other in B. This theorem is not true in the case of 3-connected bipartite graphs; a counterexample is depicted in Figure 3.1. Similarly it is false in the case of non-bipartite graphs; a counterexample is the graph V_8 which consists of an 8-cycle along with the 4 chords between vertices of distance 4 along the cycle. This graph is depicted in Figure 3.2.

In addition to being a natural question to ask about the structure of non-planar graphs, this theorem also has applications in matching theory. In Chapter 4, we will
take advantage of this result to provide a different proof of a nice result of Robertson, Seymour, and Thomas found in [42].

3.2 Lemmas

In this section we prove two lemmas that we will need for the proof of Theorem 3.1.3.

Lemma 3.2.1. Let G be an internally 4-connected bipartite graph with bipartition (A, B). Let $a, v \in A$ and $b, c \in B$ with paths $P_1 = v \ldots a, P_2 = v \ldots b, P_3 = v \ldots c$
vertex disjoint except for \(v \). Let \(X \subseteq V(G) \) with \(|X| \geq 2 \) be disjoint from \(V(P_1) \cup V(P_2) \cup V(P_3) \). Then at least one of the following holds:

1. There exist \(v' \in A, u \in B, x \in X \) and paths \(P_1' = v' \ldots a, P_2' = v' \ldots b, P_3' = v' \ldots c, P_4' = u \ldots x \) such that \(u \in V(P_1') \) and all of the \(P_i' \) are vertex disjoint and are disjoint from \(X \) except that \(v' \in V(P_1') \cap V(P_2') \cap V(P_3'), u \in V(P_1') \cap V(P_4') \) and \(x \in X \cap V(P_4') \).

2. There exists \(v', s \in A, u, t \in B, x \in X \) and paths \(P_1' = v' \ldots a, P_2' = v' \ldots t \ldots s \ldots b, P_3' = v' \ldots c, P_4' = u \ldots s, P_5' = t \ldots x \) such that \(u \in V(P_1') \) and all of the \(P_i \) are vertex disjoint and are disjoint from \(X \) except that \(v' \in V(P_1') \cap V(P_2') \cap V(P_3'), u \in V(P_1') \cap V(P_4') \), \(s \in V(P_2') \cap V(P_4') \), \(t \in V(P_2') \cap V(P_5') \), \(x \in V(P_5') \cap X \).

Definition. We will refer to the paths \(P_1', P_2', \) and \(P_3' \) as the replacement paths and the paths \(P_4' \) and, when appropriate, \(P_5' \) as the new paths. In the forthcoming arguments we will apply either the induction hypothesis or Lemma 3.2.1 to various carefully selected paths \(R_1, R_2, R_3 \) to obtain replacement paths \(R_1', R_2', R_3' \) and new paths \(R_4' \) and, when appropriate, \(R_5' \). However, we will be able to assume that \(R_1' = R_1, R_2' = R_2 \) and \(R_3' = R_3 \) which will simplify our notation. We will refer to this assumption as assuming that the replacement paths do not change.

Proof of Lemma 3.2.1. Let the paths \(P_1, P_2, P_3 \) be fixed. By an augmenting sequence we mean a sequence of paths \(Q_1, \ldots, Q_k \), where the ends of \(Q_i \) are \(v_{2i-1} \) and \(v_{2i}, v_{2k} \in X, v_1 \in V(P_1) - \{a, v\} \), each other \(v_i \) is in \(P_j \backslash v \) for some \(j \in \{1, 2, 3\} \), and all the \(Q_i \) are vertex disjoint from one another and disjoint from the \(P_i \) and \(X \) except for their ends. Further, for \(j > 1 \) odd, \(v_j \) and \(v_{j-1} \) are distinct and both lie on the same \(P_i \) and \(v_j \) lies between \(v \) and \(v_{j-1} \) on \(P_i \). If \(v_i, v_j \in V(P_l) \) and \(i < j - 1 \), then \(v, v_i, v_j \) appear in \(P_l \) in the order listed (possibly \(v_i = v_j \)). We refer to each \(Q_i \) as an augmentation. The length of an augmenting sequence is the number of
augmentations it has. We define the index of the augmenting sequence Q_1, Q_2, \ldots, Q_k to be the smallest integer i such that either i is odd and $v_i \in A$, or i is even and $v_i \in B$, or $i = 2k + 1$.

We proceed by induction on the size of $V(G) - X$. Since G is internally 4-connected it follows by the standard “augmenting path” argument from network flow theory or from Lemmas 3.3.2 and 3.3.3 in [13] that there exists an augmenting sequence.

Choose the vertex v, paths P_1, P_2, P_3, and an augmenting sequence $S = (Q_1, \ldots, Q_k)$ such that the length of S is as small as possible, and, subject to that, the index of S is as large as possible. Let v_1, v_2, \ldots, v_{2k} be the ends of the paths Q_i, numbered as above. Then it follows that for $j = 2, 4, \ldots, 2k - 2$ the vertex v_j lies on a different path P_i than v_{j-1}. Note that this lemma is equivalent to showing that the length of S is at most 2 and that the index of S is at least twice the length of S.

Suppose first that the length of S is 1. Then we may assume that the index of S is 1, so $v_1 \in A$. Let $X' = X \cup V(v_1P_1a \cup Q_1 \setminus v_1)$. Then apply the induction hypothesis to the paths vP_1v_1, P_2, P_3 and set X'. We may assume that the replacement paths do not change. Suppose we have outcome (1). Thus there exists a path P_4 with ends $u \in B \cap V(vP_1v_1)$ and $x \in X'$, disjoint from $V(P_1 \cup P_2 \cup P_3) \cup X'$, except for its ends. If $x \in X$, then this is exactly outcome (1) in the original situation. If $x \in V(Q_1)$, then take $P_4' = P_4 \cup xQ_1v_2$ to find outcome (1) in the original situation. If $x \in V(v_1P_1a) - \{v_1\}$, then take $P_4' = vP_1u \cup P_4' \cup xP_1a$, $P_4' = uP_1v_1 \cup Q_1$ to again have outcome (1). So we must have outcome (2), and so there exist paths P_4, P_5 as stated in (2). Again, if $x \in X$, this is exactly outcome (2), and if $x \in V(Q_1)$, then taking $P_5' = P_5 \cup xQ_1v_2$ again gives outcome (2). So we may assume $x \in V(v_1P_1a)$. We then take $v' = v$, $P_1' = vP_2tP_5xP_1a$, $P_2' = vP_1uP_4sP_2b$, $P_3' = vP_3c$, $P_4' = tP_2s$, $P_5' = uP_1v_1Q_1v_2$, which is an instance of outcome (2).

So we may assume that the length of S is at least 2. Suppose that the index of S is 1, so $v_1 \in A$. Without loss of generality, we may assume that $v_2 \in V(P_2)$.
Let $u \in B$ lie on P'_1 between v_1 and a. Since $\{a, v_1\}$ is not a 2-separation in G, we can apply Menger’s Theorem to find three paths from u, one to a, one to v_1 and one to $V(X) \cup V(Q_1) \cup V(Q_2) \cup V(P_1) \cup V(P_2) \cup V(P_3)$ labeled R_1, R_2, R_3 respectively. We replace v_1P_1a by $R_1 \cup R_2$ and simply refer to R_3 as R. Let the ends of R be u and r. If $r \in X$, then we have an augmenting sequence of length 1 contrary to the choice of S. If $r \in V(Q_i)$, then we have found an augmenting sequence of at most the same length as S, but with index at least 2. If $r \in V(P_1)$, then we take $P'_1 = vP_1ruP_1a$ and $Q'_1 = uP_1vP_1v_2$, which gives an augmenting sequence of the same length but with higher index. If r is on P_2 between v_3 and b with $r \neq v_3$, then taking $Q'_1 = R$ is immediately an augmenting sequence with the same length and higher index. If r is on P'_2 between v_3 and v', then let $v' = v_1$, $P'_1 = v_1P_1a$, $P'_2 = v_1Q_1v_2P_2b$, $P'_3 = v_1Q_1v_2P_3c$, and $Q_1 = uRrP_2v_3Q_2v_4$ which gives an augmenting sequence of shorter length. Similarly, if r is on P'_3, let $v' = v_1$, $P'_1 = v_1P_1a$, $P'_2 = v_1Q_1v_2P_2b$, $P'_3 = v_1Q_1v_2P_3c$, and $Q'_1 = R$, $Q'_2 = vP_2v_3Q_2v_4$ which is an augmenting sequence of the same length but higher index.

So we may assume that the index of S is at least 2. Suppose the index is exactly 2, so $v_2 \in B$. Then apply the induction hypothesis to the paths Q_1, v_1P_1a and v_1P_1v and set $X' := X \cup V(P_2) \cup V(P_3) \cup V(Q_2) \cup V(Q_3) \cup \cdots \cup V(Q_k) - \{v, v_2\}$. We assume, since we may, that the replacement paths do not change. Suppose we have outcome (1). This gives a vertex $u \in A$ on Q_1 and x in X' with a path P_4 between them. If $x \in X$, then take $u' = v_1$, $P'_4 = v_1Q_1uP_4x$ to get outcome (1). If $x \in Q_i$ for $i > i$, then take $Q'_1 = v_1Q_1uP_4xQ_i$ which gives the shorter augmenting sequence $Q'_1, Q_{i+1}, Q_{i+2}, \ldots, Q_k$. If x is on P_2 between v_2 and b, then take $P'_2 = vP_1v_2Q_1uP_4xP_2b$, $v'_2 = u$, and $Q'_1 = v_1Q_1u$ which gives an augmenting sequence of higher index. If x is on P_2 between v and v_2, then we take $P'_2 = vP_2xP_4uQ_1v_2P_2b$, $v'_3 = x$, and $Q'_2 = xP_2v_3Q_2v_4$ if $v_3 \in v_2P_2x$ and $Q'_2 = Q_2$ if $v_3 \in xP_2v$ which gives an augmenting sequence with
higher index. Finally, if x is on P_3, then take $v' = u, P'_1 = uQ_1v_1P_1a, P'_2 = uQ_1v_2P_2b, P'_3 = uP_4xP_3c$, and $Q'_1 = v_1P_1vP_2v_3Q_2v_4$ which gives a shorter augmenting sequence.

So instead we have outcome (2) and we use the notation for u, s, t, x, P_4, P_5 as listed in the outcome. It follows that $P_1 = vP_1sP_1tP_1v_1P_1a$. If $x \in X$, then taking $P'_1 = vP_1sP_4uQ_1v_1P_1a, P'_2 = P_2, P'_3 = P_3, P'_4 = sP_1tP_5x$ gives outcome (1). If $x \in V(P'_2)$ between v_2 and b, we take $v' = t, P'_1 = tP_1a, P'_2 = tP_5xP_2b, P'_3 = tP_1vP_3c, Q'_1 = v_1Q_1v_2P_2v_3Q_2v_4$ and then $Q'_1, Q_3, Q_4, ..., Q_k$ is an augmenting sequence of length $k - 1$, a contradiction. If x is on P'_2 between v and v_2, take $v' = u, P'_1 = uQ_1v_1P_1a, P'_2 = uQ_1v_2P_2b, P'_3 = uP_4sP_1vP_3c, Q'_1 = v_1P_1tP_5xP_2v_3Q_2v_4$ which gives a shorter augmenting sequence. If $x \in V(Q_i)$ with $i > 1$, then taking $Q'_1 = tP_3xQ_1v_2i$ gives the augmenting sequence $Q'_1, Q_{i+1}, Q_{i+2}, ..., Q_k$ which contradicts the choice of S. Finally, if x is on P'_3, take $v' = t, v'_2 = u, v'_3 = s, P'_1 = tP_1a, P'_2 = tP_1sP_4uQ_1v_2P_2b, P'_3 = tP_5xP_3c, Q'_1 = v_1Q_1u$, and $Q'_2 = sP_1vP_2v_3Q_2$ to get an augmenting sequence of the same length and higher index.

So we may assume the index of S is at least 3. Suppose the index is exactly 3, so $v_3 \in A$. Note that v_2 and v' are completely symmetric with respect to this augmenting sequence (up to v_3). We apply induction to the paths $v_2P_2v_3, Q_1, v_2P_2b$ and set $X' := X \cup V(P_1 \cup vP_2v_3 \cup P_3 \cup Q_2 \cup Q_3 \cup \cdots \cup Q_k) - \{v_1, v_3\}$. Since we may, we assume the replacement paths do not change. Suppose first we find outcome (2). We use the notation in the outcome for u, s, t, x. If $x \in X$, then taking $P'_4 = v_1Q_1tP_5x$ with $u' = v_1$ gives outcome (1). If x is on $Q_i, i > 1$, we take $Q'_1 = v_1Q_1tP_5xQ_i$ which gives a shorter augmenting sequence. If x is on P_2 between v and v_3, P_3, or on P_1 between v_1 and v, let i be such that P_i contains x, then we can take $v' = v_2$, $P'_1 = v_2P_2uP_4sQ_1v_1P_1a, P'_2 = v_2P_2b, P'_3 = v_2Q_1tP_5xP_1vP_3c, v'_1 = u, Q'_1 = uP_2v_3Q_2v_4$ to find a shorter augmenting sequence. Finally, if x is on P_1 between v_1 and a, we take $v' = v_2, P'_1 = v_2Q_1tP_5xP_1a, P'_2 = v_2P_2b, P'_3 = v_2P_2uP_4sQ_1v_1P_1vP_3c, v'_1 = t, v'_2 = s, v'_3 = u, Q'_1 = tQ_1s, Q'_2 = uP_2v_3Q_2v_4$ which gives an augmenting sequence with the
same length and higher index.

So instead we consider outcome (1) with the notation for \(u, x, P_4 \) as in the outcome. If \(x \in X \), we can take \(u' = v_1, s' = v_2, t' = u, P_4' = Q_1, P_5' = P_4 \) to find outcome (2). If \(x \) is on a \(Q_i, i > 1 \), then we take \(v_3' = u, Q_2' = uP_4xQ_i \) which gives an augmenting sequence of at most the same length but higher index. If \(x \) is on \(P_2 \) between \(v' \) and \(v_3 \), then take \(P_2' = vP_2xP_4uP_2b, v_3' = u, Q_2' = uP_2v_3Q_2v_4 \) to find an augmenting sequence of the same length with higher index. If \(x \) is on \(P_3 \), we take \(v' = v_2, P_1' = v_2Q_1v_1P_1a, P_2' = v_2P_2b, P_3' = v_2P_2uP_4xP_3c, Q_1' = v_1P_2v_3Q_2v_4 \) which gives a shorter augmenting sequence. If \(x \) is on \(P_1 \) between \(v_1 \) and \(a \), then take \(v' = v_2, P_1' = v_2P_2uP_4xP_1a, P_2' = v_2P_2b, P_3' = v_2Q_1v_1P_1vP_3c, v_1' = u, Q_1' = uP_2v_3Q_2v_4 \) which gives a shorter augmenting sequence. Finally, suppose \(x \) is on \(P_1 \) between \(v \) and \(v_1 \) and \(x \in A \). Then consider \(P_1' = v_2Q_1v_1P_1a, P_2' = v_2P_2b, P_3' = v_2P_2uP_4xP_1vP_3c, Q_1' = v_1P_1x, Q_2' = uP_2v_3Q_2 \) which gives an augmenting sequence of the same length and lower index.

So we must have \(x \in B \) on \(P_1 \) between \(v \) and \(v_1 \). We apply induction to the paths \(vP_2v_3, vP_1x, P_3 \) and set \(X' := X \cup V(xP_1a \cup v_3P_2b \cup P_4 \cup Q_1 \cup Q_2 \cup Q_3 \cup \cdots \cup Q_k) - \{x, v_3\} \). This gives us \(u_2 \in A \) between \(v \) and \(v_3 \) with a path \(P_5 \) to \(x_2 \). Suppose we have outcome (1). Then if \(x_2 \) is not on \(Q_1, P_4 \), or \(xP_1v_1 \), then by symmetry we can apply the analysis of the previous paragraph. If \(x_2 \) is on \(P_4 \), then we replace \(P_4 \) with \(uP_4xP_5u_2 \) and have one of the outcomes above. If \(x_2 \) is on \(Q_1 \), then take \(v' = v, P_1' = P_1, P_2' = vP_2u_2P_5xQ_1v_2P_2b, P_3' = P_3, v_1' = x, Q_1' = xP_4uP_2v_3Q_2v_4 \) to find a shorter augmenting sequence. Finally, if \(x_2 \) is on \(xP_1v_1 \), then take \(v' = v_2, P_1' = v_2Q_1v_1P_1a, P_2' = v_2P_2b, P_3' = v_2P_2uP_4xP_1vP_3c, Q_1' = v_1P_1xP_3u_2P_2v_3Q_2 \) which is a shorter augmenting sequence. So we must have outcome (2) of the lemma which gives vertices \(u_2, s, t, x_2 \) and paths \(P_6 \) and \(P_6 \). If \(x_2 \) is not on either \(P_4 \) or \(v_1P_4x \), then we can apply the analysis from the previous two paragraphs. Suppose \(x_2 \in V(P_4) \). Then take \(v' = v, P_1' = vP_2u_2P_5sP_1a, P_2' = vP_4u_2P_4xP_4uP_2b, P_3' = P_3, Q_1' = u_2P_2v_3Q_2 \) to get
a shorter augmenting sequence. Finally, suppose $x_2 \in V(v_1 P_1 x)$. Then take $v' = s$, $P'_1 = sP_1 tP_2 xP_1 a$, $P'_2 = sP_1 xP_4 uP_2 b$, $P'_3 = sP_3 v_2 P_2 v_P_3 c, Q'_1 = Q, Q'_2 = uP_2 v_3 Q_2$ which is an augmenting sequence of the same length and lower index.

So we may finally assume that the length of S is at least 3 with index at least 4. Note that v_4 must be on P'_3 (still assuming that v_2 was on P'_2), since otherwise we get a shorter augmenting sequence. But then take $v' = v_2, P'_1 = v_2 Q_1 v_1 P_1 a, P'_2 = v_2 P_2 b, P'_3 = v_2 P_2 v_3 Q_2 v_4 P_3 c, Q'_1 = v_1 P_1 v_3 v_5 Q_3 v_6$, which gives a shorter augmenting sequence.

Lemma 3.2.1 will suffice for most of our arguments. However, on one occasion we will need the following strengthening.

Lemma 3.2.2. Let G be an internally 4-connected bipartite graph with bipartition (A, B). Let $a, v \in A$ and $b, c \in B$ with paths $P_1 = v \ldots a, P_2 = v \ldots b, P_3 = v \ldots c$ vertex disjoint except for v. Let $X \subseteq V(G)$ be disjoint from $V(P_1) \cup V(P_2) \cup V(P_3)$. Then at least one of the following holds:

(A) There exist vertices $v' \in A, u \in B, x \in X \cap A$ and paths $P'_1 = v' \ldots a, P'_2 = v' \ldots b, P'_3 = v' \ldots c, P'_4 = u \ldots x$ such that $u \in V(P'_1)$ and all of the P'_i are vertex disjoint and are disjoint from X except as specified,

(B) There exist vertices $v', s \in A, u, t \in B, x \in X \cap B$ and paths $P'_1 = v' \ldots a, P'_2 = v' \ldots b, P'_3 = v' \ldots c, P'_4 = u \ldots s \ldots x, P'_5 = s \ldots t$ such that $u \in V(P'_1), t \in V(X \cup P'_2 \cup P'_3)$, and all of the P'_i are vertex disjoint and are disjoint from X except as specified and except that t may lie on P'_2 or P'_3,

(C) There exist vertices $v', s \in A, u, t \in B, x \in X$ and paths $P'_1 = v' \ldots a, P'_2 = v' \ldots t \ldots s \ldots b, P'_3 = v' \ldots c, P'_4 = u \ldots s, P'_5 = t \ldots x$ such that $u \in V(P'_1)$ and all of the P'_i are vertex disjoint and are disjoint from X except as specified,
(D) There exist vertices $v', s, w \in A, u, t \in B, x, y \in X \cap B$ and paths $P'_1 = v'...u...w...t...a, P'_2 = v'...b, P'_3 = v'...c, P'_4 = u...s...x, P'_5 = s...t, P'_6 = w...y$

such that all of the P'_i are vertex disjoint and are disjoint from X except as specified and except that x may equal $y.$

Proof. We proceed by induction on the size of $|V(G)| - |X|$. Apply Lemma 3.2.1. We may assume that we are in the first outcome of that lemma since the second outcome is outcome (C) of this lemma. We may assume that the replacement paths do not change. Thus there exists a path P_4 with ends $u \in B \cap V(P_1)$ and $x \in X$, vertex-disjoint from $P_1 \cup P_2 \cup P_3$, except for u. We may assume that $x \in B$, for
otherwise (A) holds.

We apply the induction hypothesis to the paths \(P_4, uP_1a \) and \(uP_1v \), and set \(X' = X \cup V(P_2 \cup P_3 \setminus \{x, v\}) \). Note that \(|X'| > |X| \) since \(b \) and \(c \) are distinct, not in \(X \), and in \(P_2 \cup P_3 \) and \(v \) was not in \(X \) originally. We consider each of the four outcomes separately. We may assume that the replacement paths do not change.

If outcome (A) holds, then we obtain outcome (B) of the lemma. Next, let us assume that the induction hypothesis yields outcome (B). Thus there exist vertices \(s \in A \cap V(P_4), t \in B, y \in A \cap (V(P_2 \cup P_3) \cup X) \) and \(w \in A \cap (V(P_1 \cup P_2 \cup P_3) \cup X) \), and paths \(P_5 \) from \(s \) to \(y \) and \(P_6 \) from \(t \) to \(w \) such that the paths \(P_5 \) and \(P_6 \) are disjoint and disjoint from \(V(P_1 \cup P_2 \cup P_3) \cup X \), except as stated. If \(y \in X \), then we have the outcome (A) by taking \(P'_1 = P_1, P'_2 = P_2, P'_3 = P_3, P'_4 = uP_4sP_3y \) and \(v' = v, u = u, x = y \). So without loss of generality, we may assume \(y \in V(P_2) \). We are now interested in where \(w \) lies. If \(w \) lies on \(P_2 \), then we may assume that it lies between \(y \) and \(b \) since \(y \) and \(w \) are then symmetric. In that case, take \(P'_1 = P_1, P'_2 = vP_2yP_5tP_6wP_2b, P'_3 = P_3, P'_4 = P_4, P'_5 = sP_5t, x = x, t = t, s = s, u = u, v' = v \) which is exactly outcome (B). If \(w \) lies on \(P_1 \) between \(v \) and \(u \), take \(v' = w, s = s, t = t, u = u, x = x, \)

\(P_1 = wP_1a, P_2 = wP_0tP_5yP_2b, P_3 = wP_1vP_3c, P_4 = uP_4x, P_5 = sP_5t \)

which is again outcome (B). If \(w \) lies on \(P_3 \), take \(v' = w, s = s, t = t, u = u, x = x, \)

\(P_1 = wP_3vP_1a, P_2 = wP_0tP_5yP_2b, P_3 = wP_3c, P_4 = uP_4x, P_5 = sP_5t \), which is again outcome (B). So we have that \(w \) lies on \(P_1 \) between \(u \) and \(a \) (or is \(a \)).

Let \(r \in B \) lie between \(v \) and \(y \) on \(P_2 \). By Menger’s theorem and by replacing \(vP_2y \) if necessary we may assume that there exists a path \(P_7 \) from \(r \) to a vertex \(z \) not on \(vP_2y \) that is disjoint from \(P_1 \cup \cdots \cup P_6 \), except for its ends. If \(z \in X \), then keeping \(v = v', P'_1 = P_1, P'_2 = P_2, P'_3 = P_3 \) and taking \(u = u, t = r, s = y, x = z, \)

\(P'_4 = uP_4sP_3y, P'_5 = P_7 \), this is outcome (C). If \(z \in V(P_1) \) between \(v \) and \(u \) (note that this is symmetric with \(z \in V(P_3) \)), then take \(v' = y, u = t, s = s, t = r, x = x, \)

\(P'_1 = yP_3tP_6wP_1a, P'_2 = yP_2b, P'_3 = yP_2vP_3c, P'_4 = tP_5sP_4x, P'_5 = sP_4uP_1zP_7r \) to find
outcome (B). If z is on P_1 between u and w, take $v' = y, u = t, s = s, t = u, x = x, P'_1 = yP_5tP_6wP_1a, P'_2 = yP_2b, P'_3 = yP_3rP_7zP_1vP_3c, P'_4 = tP_5sP_4x, P'_5 = sP_4u$, which is outcome (B). If z is on P_1 between w and a, take $v' = y, u = r, t = u, s = v, x = x, P'_1 = yP_2rP_7zP_1a, P'_2 = yP_2b, P'_3 = yP_5tP_6wP_1vP_3c, P'_4 = rP_2a, P'_5 = uP_4x,$ which gives outcome (C). If z is on P_2 between y and b, then take $v = v', P'_1 = P_1, P'_2 = vP_2rP_7zP_2b, P'_3 = P_3, u = u, s = s, x = x, t = r, P'_4 = P_4, P'_5 = sP_5yP_2r$ to again find outcome (B). If z is on P_4 between u and s, take $v' = y, u = t, s = s, t = r, x = x, P'_1 = yP_5tP_6wP_1a, P'_2 = yP_2b, P'_3 = yP_2vP_3c, P'_4 = tP_5sP_4x, P'_5 = sP_4zP_7r$ which is outcome (B). If z is on P_4 between s and x, take $v' = v, u = u, s = y, t = r, P'_1 = P_1, P'_2 = P_2, P'_3 = P_3, P'_4 = uP_4sP_5y, P'_5 = rP_7zP_4x$ to get outcome (C). If z is on P_5 or P_6, then take $v = v', P'_1 = P_1, P'_2 = P_2, P'_3 = P_3, P'_4 = uP_4sP_5zP_7r$ to find outcome (B) and if z is on P_6, take $P'_5 = sP_5tP_6zP_7r$ to find outcome (B). This completes the case when induction yields outcome (B).

Next we assume that induction yields outcome (C). Thus there exist vertices $s \in A \cap V(P_1), t \in B \cup V(P_1), w \in A \cap V(P_1)$ and $y \in X'$, and paths P_5, P_6 such that v, u, w, t, a occur on P_1 in the order listed, P_5 has ends s and t, P_6 has ends w and y, and P_5, P_6 are disjoint and disjoint from P_1, P_2, P_3, P_4, except for their ends.

Note that if $y \in X \cup B$, this is exactly outcome (D), including the notation. Suppose first that $y \in X \cup A$. Then take $v' = v, u = u, x = y, P'_1 = vP_1uP_4sP_5tP_1a, P'_2 = P_2, P'_3 = P_3, P'_4 = uP_4wP_6y$ to find outcome (A). So we may assume that $y \in V(P_2)$. Then take $v' = w, u = t, s = s, t = u, x = x, P'_1 = wP_1a, P'_2 = wP_6yP_2b, P'_3 = wP_1vP_3c, P'_4 = tP_5sP_4x, P'_5 = sP_4u$, which is outcome (C). Since $y \in V(P_3)$ is symmetric with this case, that completes this outcome.

Finally, we assume that induction yields outcome (D). Thus there exist vertices $s, t \in A \cap V(P_1), r \in B \cap V(P_1), w \in B$ and $y, z \in A \cap X'$, and paths P_5, P_6, P_7 such that u, s, r, t, x occur on P_4 in the order listed, P_5 has ends s and y and includes
w, \(P_6\) has ends \(w\) and \(t\), \(P_7\) has ends \(r\) and \(z\), and the paths \(P_5, P_6, P_7\) are pairwise disjoint and disjoint from \(P_1, P_2, P_3, P_4\), except for their ends. Note that \(y\) and \(z\) are completely symmetric as are \(r\) and \(w\). Suppose that \(y \in X\). Then take \(v' = v, u = u, x = y, P_1' = P_1, P_2' = P_2, P_3' = P_3, P_4' = uP_4sP_5y\) to get outcome (A). So we may assume \(y \in V(P_2)\). Suppose \(z\) lies on \(P_2\) between \(v\) and \(y\) (by symmetry, if \(z\) lies on \(P_2\), this assumption is without loss of generality). Then take \(v' = v, u = u, t = r, x = x, s = s, P_1' = P_1, P_2' = vP_2zP_7rP_4sP_5yP_2b, P_3' = P_3, P_4' = uP_4s, P_5' = rP_4x\)

which is outcome (C). So \(z\) lies on \(P_3\). Then take \(v' = y, u = u, t = r, x = x, P_1' = yP_2vP_1a, P_2' = yP_2b, P_3' = yP_5sP_4rP_7zP_3c, P_4' = uP_4s, P_5' = rP_4x\) which is again outcome (C). This completes this outcome and the proof.

3.3 Proof of Theorem 3.1.3

Let \(H\) be a subgraph of a graph \(G\). By an \(H\)-path in \(G\) we mean a path in \(G\) with at least one edge, both ends in \(V(H)\) and no other vertex or edge in \(H\).

Let \(H\) be a hex in a graph \(G\), let \(P\) be the union of a set of \(H\)-paths in \(G\), and let \(Q\) be a subgraph of \(H\). We denote by \(H + P - Q\) the graph obtained from \(H \cup P\) by deleting all edges of \(Q\) and then deleting all resulting isolated vertices. A typical application will be when \(P\) and \(Q\) are paths, but we will need more complicated choices.

A hex in a graph \(G\) is optimal if no hex of \(G\) has strictly more odd segments. We proceed by a series of lemmas, each improving a lower bound on the number of odd segments in an optimal hex.

Lemma 3.3.1. Let \(G\) be a 3-connected bipartite graph. Then every optimal hex of \(G\) has at least four odd segments.

Proof. Let \((A, B)\) be a bipartition of \(G\) and let \(H\) be an optimal hex in \(G\) with feet and segments numbered as in the definition of a hex. We may assume for a contradiction that \(H\) has at most three odd segments. It follows that at least five feet of \(H\) belong
to the same set A or B, and so we may assume that v_1, v_2, \ldots, v_5 all belong to A. Thus P_{14} has an internal vertex u that belongs to B. Since G is 3-connected we may assume, by replacing P_{14} if necessary, that there exists an H-path Q with one end u and the other end, say w, in $V(H) - V(P_{14})$. By symmetry, we may assume that w belongs to $P_{15}, P_{16}, P_{24}, P_{25},$ or P_{26}. Let R be defined as $v_1P_{15}w, v_1P_{16}w, v_4P_{24}w, P_{24}$ or P_{24}, respectively. Then $H + Q - R$ is a hex with strictly more odd segments than H, contrary to the optimality of H. □

Lemma 3.3.2. Let G be an internally 4-connected bipartite graph. Then every optimal hex of G has at least five odd segments.

Proof. Let (A, B) be a bipartition of G and let H be an optimal hex in G with feet and segments numbered as in the definition of a hex. By Lemma 3.3.1 we may assume for a contradiction that H has exactly four odd segments. It follows that two feet of H in $\{v_1, v_2, v_3\}$ and two feet of H in $\{v_4, v_5, v_6\}$ belong to the same set A or B, and so we may assume that v_1, v_2, v_4, v_5 all belong to A. Thus P_{14} has an internal vertex u that belongs to B. Since G is 3-connected we may assume, by replacing P_{14} if necessary, that there exists an H-path Q with one end u and the other end, say w, in $V(H) - V(P_{14})$. By symmetry, we may assume that w belongs to $P_{15}, P_{16}, P_{25}, P_{26},$ or P_{36}. If w belongs to $P_{15}, P_{16}, P_{36}, A \cap V(P_{25} \cup P_{26})$, or $B \cap V(P_{26})$, let R be defined as $v_1P_{15}w, v_1P_{16}w, P_{24}, P_{24}$, or P_{16}, respectively. Then $H + Q - R$ is a hex with strictly more odd segments than H, contrary to the optimality of H.

So we may assume that $w \in B \cap V(P_{25})$. Note that this is the last case and is not symmetric with anything else, so it suffices to reduce to any of the previous cases. We now apply Lemma 3.2.1 to the paths $v_1P_{14}u, uP_{14}v_4, Q$ and $X := V(H) - (V(P_{14}) - \{w\})$ with A and B swapped. We may assume that the replacement paths do not change. If outcome (1) of the lemma holds, then there exist vertices $y \in A \cap V(Q)$, $z \in X$ and an $H \cup Q$-path R from y to z. If $z \in B \cap V(P_{25})$, we may assume it belongs to $v_5P_{25}w$. Then we can replace P_{25} by $v_2P_{25}wQyRzP_{25}v_5$, Q by vQy, and
apply the case above where \(w \in A \cap V(P_{25}) \). If \(z \notin B \) or \(z \) is not on \(P_{25} \), then we can replace \(Q \) with \(uQyRz \) and apply one of the previous cases.

So we may assume that the second outcome of the lemma holds. Thus there exist vertices \(a \in A \cap V(Q) \), \(b \in B \cap V(P_{14}) \), \(c \in A \cap V(P_{14}) \), and \(d \in X \) and disjoint \(H \cup Q \)-paths \(R \) between \(a \) and \(b \) and \(S \) between \(c \) and \(d \). We may assume that \(b \) belongs to \(v_1P_{14}u \). Then we can replace \(P_{14} \) by \(v_1P_{14}bRaQuP_{14}v_1 \) and \(Q \) by \(uP_{14}cRd \) which puts us in one of the previous cases unless \(d \in B \cap V(P_{25}) \). So we may assume \(d \in B \cap V(P_{25}) \), and that it belongs to \(wP_{25}v_5 \). Let \(H' \) be the hex obtained from \(H \cup S \cup R \cup Q \) by deleting \(V(P_{15} \cup v_5P_{25}d \cup P_{34} \cup P_{35} \cup P_{36}) - \{v_1, d, v_4, v_6\} \). Then \(H' \) has nine odd segments, contrary to the optimality of \(H \). □

Lemma 3.3.3. Let \(G \) be an internally 4-connected bipartite graph. Then every optimal hex of \(G \) has at least six odd segments.

Proof. Let \((A, B)\) be a bipartition of \(G \) and let \(H \) be an optimal hex in \(G \) with feet and segments numbered as in the definition of a hex. By Lemma 3.3.2 we may assume \(H \) has exactly five odd segments and that \(v_1, v_2, v_4 \in A \) and \(v_3, v_5, v_6 \in B \). We now apply Lemma 3.2.1 to the paths \(P_{14}, P_{15}, P_{16} \) and set \(X := V(H) - V(P_{14} \cup P_{15} \cup P_{16}) \). We may assume that the replacement paths do not change.

Suppose first that outcome (2) of the lemma holds. Thus we may assume that there exist vertices \(u \in B \cap V(P_{14}) \), \(w \in A \cap V(P_{15}) \), \(y \in B \cap V(v_1P_{15}w) \) and \(z \in X \), and disjoint \(H \)-paths \(Q \) from \(u \) to \(w \) and \(R \) from \(y \) to \(z \). Then by symmetry we may assume that \(z \) belongs to one of \(P_{24}, P_{25}, P_{34}, P_{35} \). Let \(T \) be, respectively, \(v_2P_{24}z \cup P_{25} \cup P_{26}, v_5P_{25}z \cup P_{26}, P_{25} \cup v_3P_{34}z, P_{36} \cup v_5P_{35}z \). Then the hexes \(H + (Q \cup R) - T \) have at least six odd segments which is a contradiction.

So we may assume that outcome (1) of the lemma holds. Thus there exists a vertex \(u \in B \cap V(P_{14}) \) and an \(H \)-path \(Q \) from it to \(w \in X \). Then by symmetry we may assume that \(w \) belongs to one of \(P_{24}, P_{25}, P_{34}, \) and \(P_{35} \). For \(w \) on \(P_{24}, P_{34}, P_{35} \) or \(A \cap V(P_{25}) \), let \(R \) be, respectively, \(v_4P_{24}w, P_{36}, v_4P_{34}w, P_{34} \). Then \(H + Q - R \) is a hex
Lemma 3.3.4. Let \(G \) be an internally 4-connected bipartite graph. Then in every optimal hex of \(G \) every segment is odd.

Proof. Let \((A, B)\) be a bipartition of \(G \) and let \(H \) be an optimal hex in \(G \) with feet and segments numbered as in the definition of a hex. By Lemma 3.3.3 we may assume \(H \) has exactly six odd segments and that that \(v_1, v_2, v_3, v_4 \in A \) and \(v_5, v_6 \in B \). We now apply Lemma 3.2.1 to the paths \(P_{14}, P_{15}, P_{16} \) and set \(X := V(H) - V(P_{14}) - \{w\} \). Suppose that outcome (1) of the lemma holds. Thus there exist vertices \(y \in A \cap V(Q) \) and \(z \in X \) and an \(H \cup Q \)-path \(R \) from \(y \) to \(z \). If \(z \in B \cap V(P_{25}) \), we may assume it belongs to \(v_5P_{25}w \). Then we can replace \(P_{25} \) by \(v_2P_{25}wQyRzP_{25}v_5 \), \(Q \) by \(uQy \), and apply the case above where \(w \in A \cap V(P_{25}) \). If \(z \in B \cap V(P_{26}) \), then the hex \(H + (Q \cup R) - (v_5P_{25}w \cup v_2P_{26}z \cup P_{35}) \) has nine odd segments which contradicts the optimality of \(H \). If \(z \notin B \) or \(z \) is not on \(P_{25} \) or \(P_{26} \), then we can replace \(Q \) with \(uQyRz \) and apply one of the previous cases.

So we may assume that the second outcome of the lemma holds. Thus there exist vertices \(a \in A \cap V(Q) \), \(b \in B \cap V(v_1P_{14}u) \), \(c \in A \cap V(P_{14}) \) and \(d \in X \), and disjoint \(H \cup Q \)-paths \(R \) between \(a \) and \(b \) and \(S \) between \(c \) and \(d \). Then we can replace \(P_{14} \) by \(v_1P_{14}bRaQuP_{14}v_4 \) and \(Q \) by \(uP_{14}cRd \) which puts us in one of the previous cases, unless \(d \in B \) and \(d \) is on \(P_{25} \) or \(P_{26} \). Let \(F = S \cup Q \cup R \). If \(d \) is on \(wP_{25}v_5 \), let \(J = P_{35} \cup P_{26} \cup v_5P_{25}d \cup P_{15} \); if \(d \) is on \(wP_{25}v_2 \), let \(J = P_{15} \cup P_{24} \cup P_{26} \cup v_2P_{25}d \); and if \(d \) is on \(P_{26} \), let \(J = P_{24} \cup P_{35} \cup v_6P_{26}d \). Then the hexes \(H + F - J \) have at least six odd segments, which contradicts the optimality of \(H \). □

Lemma 3.3.4. Let \(G \) be an internally 4-connected bipartite graph. Then in every optimal hex of \(G \) every segment is odd.

Proof. Let \((A, B)\) be a bipartition of \(G \) and let \(H \) be an optimal hex in \(G \) with feet and segments numbered as in the definition of a hex. By Lemma 3.3.3 we may assume \(H \) has exactly six odd segments and that that \(v_1, v_2, v_3, v_4 \in A \) and \(v_5, v_6 \in B \). We now apply Lemma 3.2.1 to the paths \(P_{14}, P_{15}, P_{16} \) and set \(X := V(H) - V(P_{14} \cup P_{15} \cup P_{16}) \).

Suppose first that outcome (2) of the lemma holds. Thus there exist vertices \(u \in B \cap V(P_{14}) \), \(w \in A \cap V(P_{15}) \), \(y \in B \) and \(z \in X \), and disjoint \(H \)-paths \(Q \) from \(u \) to \(w \) and \(R \) from \(y \) to \(z \). By symmetry we may assume that \(z \) belongs to \(P_{24} \setminus v_2, P_{25}, \) or \(P_{26} \). Let \(J \) be, respectively, \(P_{35} \cup zP_{24}v_2, P_{34} \cup zP_{25}v_5, \) or \(P_{34} \cup zP_{26}v_6 \). Then the
hexes $H + (Q \cup R) - J$ each have nine odd segments, which contradicts the optimality of H.

So we may assume that outcome (1) one of the lemma holds. Thus there exist $u \in B \cap V(P_{14})$ and an H-path Q from it to $w \in X$. Then we may assume that w belongs to P_{24} or P_{25}. If $w \in V(P_{24})$, let $R = v_4 P_{24} w$. If $w \in A \cap V(P_{25})$, let $R = P_{24}$. Then $H + Q - R$ is a hex with nine odd segments, a contradiction. Thus it remains to handle the case when $w \in B \cap V(P_{25} \cup P_{26} \cup P_{35} \cup P_{36})$.

We now forget w, Q, u and instead apply Lemma 3.2.2 to the paths P_{14}, P_{15}, P_{16} and set $X := V(H) - V(P_{14} \cup P_{15} \cup P_{16})$. Outcomes (A) and (C) give results already ruled out by the case analysis from applying Lemma 3.2.1, so we may assume that outcomes (B) or (D) hold.

Suppose that outcome (B) holds. Thus there exist vertices $u \in B \cap V(P_{14})$, $w \in B \cap X$, $t \in A$ and $s \in B$, and a H-path $Q = u \ldots t \ldots w$ and a $H \cup Q$-path $R = t \ldots s$. By the previous analysis and symmetry we may assume that $w \in V(P_{25})$, so we are interested in where s lies. The above case analysis handles the cases where s is on P_{24} or P_{34}, so we need only worry about the case where s belongs to $P_{15}, w P_{25} v_5, P_{35}, P_{16}, P_{26}, P_{36}$. Then, respectively, let J be defined as $P_{24} \cup w P_{25} v_5, P_{24} \cup w P_{25} s, P_{24} \cup w P_{25} v_5, P_{34} \cup P_{35} \cup P_{36}, P_{34} \cup P_{35} \cup P_{36}, P_{34} \cup P_{35} \cup v_3 P_{36} s$. Then $H + (Q \cup R) - J$ is a hex with nine odd segments, which contradicts the optimality of H.

So we must have outcome (D). Thus there exist vertices $u, w \in V(P_{14}) \cap B$, $r \in V(P_{14}) \cap A$, $s \in A$ and $x, y \in X \cap B$, such that v_1, w, r, u, v_4 occur on P_{14} in the order listed, and there exists a H-path $Q = u \ldots s \ldots x$ and disjoint $H \cup Q$-paths $R = w \ldots s$ and $S = r \ldots y$. Without loss of generality, we may assume that $x \in V(P_{25})$. By symmetry and taking advantage of the previous cases, we may assume that y belongs to $x P_{25} v_5, P_{26}, P_{35},$ or P_{36}. Let J be $P_{15} \cup P_{34} \cup P_{35} \cup P_{36} \cup v_5 P_{25} y, P_{21} \cup x P_{25} v_5 \cup P_{36}, P_{15} \cup v_3 P_{35} y \cup P_{34} \cup P_{36},$ or $P_{24} \cup x P_{25} v_5 \cup v_3 P_{36} y$, respectively. Then $H + (Q \cup R \cup S) - J$ are each hexes with nine odd segments, a contradiction. □
Proof of Theorem 3.1.3. Let G be an internally 4-connected non-planar bipartite graph. By Theorem 3.1.2 the graph G has a hex, and hence it has an optimal hex H. By Lemma 3.3.4 every segment of H is odd, as desired. □
CHAPTER IV

PFAFFIAN ORIENTATIONS

4.1 Introduction

As discussed in the introduction, in this chapter we investigate an alternative proof to a theorem of McCuaig, Robertson, Seymour, and Thomas [42, 31]:

Theorem 4.1.1. A brace has a Pfaffian orientation if and only if it is isomorphic to the Heawood graph, or if it can be obtained from planar braces by repeated application of the trisum operation.

We remind the reader of the definition of the trisum operation from Chapter 1. Specifically, let \(G_0 \) be a graph and \(C \) a cycle of \(G_0 \) of length 4 such that \(G \setminus C \) contains a perfect matching. Let \(G_1, G_2, G_3 \) be subgraphs of \(G_0 \) such that \(G_1 \cup G_2 \cup G_3 = G_0 \) and for distinct \(i, j \in \{1, 2, 3\} \), \(G_i \cap G_j = C \) and \(V(G_i) - V(C) \neq \emptyset \). Let \(G \) be obtained from \(G_0 \) by deleting some (possibly none) of the edges of \(C \). Then \(G \) is a trisum of \(G_1, G_2 \) and \(G_3 \).

The main theorem we require en route to this result is the following:

Theorem 4.1.2. Let \(G \) be a nonplanar brace. Then \(G \) contains one of \(K_{3,3} \), the Heawood graph, or Rotunda as a matching minor.

In the previous chapter, we proved the following result:

Theorem 4.1.3. Every internally 4-connected bipartite non-planar graph has an odd hex.

Since it is not hard to see that braces are internally 4-connected, this provides a partial result in the direction of Theorem 4.1.2. Our goal in this chapter is to take
advantage of techniques similar to those used in the proof of Theorem 4.1.3 and apply
them to provide a simpler proof of Theorem 4.1.2.

While Theorem 4.1.2 is of general interest in its own right, its most important
aspect is its algorithmic implications. To that end, we state versions of the following
two theorems from [42]:

Theorem 4.1.4. Let \(G \) be a brace not isomorphic to the Heawood graph that contains
the Heawood graph as a matching minor. Then \(G \) contains \(K_{3,3} \) as a matching minor.

Theorem 4.1.5. Let \(G \) be a brace that contains Rotunda as a matching minor. Then
either \(G \) contains a set \(X \) of four vertices such that \(G \setminus X \) has three components or \(G \)
contains \(K_{3,3} \) as a matching minor.

We note that since \(K_{3,3} \) does not have a Pfaffian orientation, any graph that
contains \(K_{3,3} \) as a matching minor does not have a Pfaffian orientation. These three
theorems then allow us to sketch an algorithm, found in [42]. For a brace, check to see
if it contains a set of 4 vertices whose deletion breaks the graph into 3 components
which we will refer to as trisectors. If so, delete the graph on those vertices and recur
in each component. Theorems found in [42] tell us the original graph has a Pfaffian
orientation if and only if each component does. If there is no such separating set,
check to see if the graph is isomorphic to the Heawood graph. Otherwise, if the graph
is non-planar, by Theorem 4.1.2, it contains one of \(K_{3,3} \), Heawood, or Rotunda as a
matching minor, so by Theorems 4.1.4 and 4.1.5 contains \(K_{3,3} \) as a matching minor.
Therefore, the graph does not have a Pfaffian orientation. If the graph is planar, then
it does have a Pfaffian orientation and we can use an algorithm of Kasteleyn [22, 23] to
find it. We will provide in section 4.7 an alternative algorithm for this problem that,
in addition to avoiding the complex algorithms for finding trisectors also explicitly
find the \(K_{3,3} \) matching minor in the case where the graph is not Pfaffian.

Since planarity testing can be done in linear time as can the problem of dividing a
graph into braces, the limiting factor in the running-time of this algorithm is finding
the trisectors. In [42], the algorithm uses an $O(n^2)$ procedure of Hopcroft and Tarjan [20], but more recent work alluded to in [47] by Hegde [19] allows us to improve this to $O(n)$. The overall running time of this algorithm is then $O(n^2)$.

In this chapter we will provide simpler proofs of all three of these core theorems, Theorems 4.1.2, 4.1.4, and 4.1.5 using similar techniques to those in Chapter 3 and then use these theorems to prove Theorem 4.1.1.

4.2 Structural Lemmas

While the main objective of this chapter is to prove Theorem 4.1.1, the goal of this section is to provide two of the core tools that we will require. We provide first a brief sketch of the techniques that we plan to develop and then develop the actual lemmas.

We begin with an odd subdivision of $K_{3,3}$ with a maximal matching in the complement. We would like to choose these so that the number of vertices not included in the $K_{3,3}$ and the matching is as small as possible. If we include everything, we’re done. If some vertex is unmatched, we find three matching-augmenting paths from an unmatched vertex to the $K_{3,3}$. All these ends have the same parity; suppose they are B-vertices. We are interested in the B-ends of the subdivided paths of the $K_{3,3}$ that these paths hit; specifically, we would like them to all be different. That this is always attainable if the underlying structure is an odd subdivision of $K_{3,3}$ is the main result of the next section. If the underlying structure is not an odd subdivision of $K_{3,3}$, we can at least make two of the ends different, which is the other major result we require here.

Let us begin to formalize these notions.

First, we note that braces have a number of useful properties. The one most useful in this section is the following extension of Hall’s Theorem, discussed in Chapter 1: Let G be a brace with bipartition (A, B). Let $X \subseteq A$ and $N(X)$ be the neighbors of
X. Then \(|N(X)| \geq |X| + 2\) or \(N(X) = B\). We will refer to this as the brace property throughout this section.

Definition. Let \(G\) be a brace and \(H\) be a graph. Let \(K\) be a subgraph of \(G\) isomorphic to an odd subdivision of \(H\) with \(M\) a matching in \(G \setminus V(K)\). Then we say that \((K, M)\) is a \(H\)-skein and say that \(H\) is the pattern for \((K, M)\) and \(K\) is the base. When \(H = K\), we we refer to \((K, M)\) as simply a skein. We say that the heft of \((K, M)\) is \(|V(K)| + |V(M)|\). An \(H\)-skein is maximal if \(G\) contains no other \(H\)-skein with larger heft and is perfect if \(M\) is perfect in \(G \setminus V(K)\).

Skeins contain a number of subdivided paths; we refer to a path in a graph \(G\) with both ends of degree at least 3 and every interior vertex of degree 2 as a segment. Vertices of degree at least 3 are referred to as branch-vertices. Further, let \(H\) be a subgraph of \(G\). By an \(H\)-path in \(G\) we mean a path in \(G\) with at least one edge, both ends in \(V(H)\) and no other vertex or edge in \(H\).

In this section, a skein will often be a \(K_{3,3}\)-skein which encourages the following two definitions:

Definition. Let \(G\) be a graph and \(H\) a subgraph of \(G\) isomorphic to a subdivision of \(K_{3,3}\). Let \(v_1, v_2, ..., v_6\) be the degree three vertices of \(H\) and \(P_1, P_2, ..., P_9\) be the paths in \(H\) between \(v_i\). We then refer to \(H\) as a hex or a hex of \(G\), the \(v_i\) as the feet of \(H\), and the \(P_i\) as the segments of \(H\).

Definition. Let \(G\) be a graph and \(H\) a hex of \(G\). We refer to a segment \(P\) of \(H\) as even if it has even length and odd otherwise. We refer to \(H\) as odd if all of its segments are odd. Further, we refer to a \(K_{3,3}\)-skein as a weave.

As mentioned in the brief description of the section, our main approach will be to take a skein and find an unmatched vertex along with \(M\)-alternating paths to the base. We give such a structure a name:
Definition. Let \((K, M)\) be a skein in a bipartite graph \(G\) with bipartition \((A, B)\). Let \(S = V(G) \setminus (V(K) \cup V(M))\) and \(s \in S\). Let \(P_1, P_2, P_3\) be \(M\)-alternating paths with ends \(s\) and, respectively, \(x, y, z \in V(K)\), that are vertex disjoint except at \(v\) and disjoint from \(K\) except at their ends. Then we say that \(s, P_1, P_2, P_3\) form a snarl for \((K, M)\) with ends \(x, y, z\) and root \(s\). The breadth of a snarl is \(P_1 \cup P_2 \cup P_3\).

We note that the root and ends of a snarl are of opposite parity. In the following proof we will discuss reversing a matching \(M\) along an \(M\)-alternating path \(P\) to find a new matching \(M'\). By this we mean to remove from \(M\) every edge of \(P\) in \(M\) and simultaneously add to \(M\) every edge of \(P\) not in \(M\). We show first that snarls exist:

Lemma 4.2.1. Let \(G\) be a brace with bipartition \((A, B)\). Let \((K, M)\) be a skein in \(G\) with \(M\) maximum in \(G \setminus V(K)\) and \(|V(K) \cap A| \geq 3\). Let \(X = V(G) \setminus (V(K) \cup V(M))\) and \(x \in X \cap B\). Let \(S\) be the set of vertices of \(B\) reachable by \(M\)-augmenting paths from \(x\). Then \(S\) has at least three neighbors in \(K\), and, for every three neighbors of \(S\) in \(K\), \(v_1, v_2, v_3\), there exists a vertex \(s \in S\) and a matching \(M'\) such that \((K, M')\) is a skein of the same heft as \((K, M)\) and \(G\) contains a snarl in \((K, M')\) with root \(s\) and ends \(v_1, v_2, v_3\).

Proof. We view \(S\) as an \(M\)-alternating tree rooted at \(x\), by which we mean a tree such that every subpath of \(S\) with end \(x\) is \(M\)-alternating. Then \(S\) is a maximal \(M\)-alternating tree rooted at \(x\). Since \(M\) is a maximum matching of \(G \setminus V(K)\) it follows that every leaf of \(S\) belongs to \(A \cap V(K)\). We show first that \(S\) has at least three leaves. Suppose otherwise. Let \(S_A = S \cap A, S_B = S \cap B\) and \(k = |S_A \cap K|\). Since each vertex of \(S_B\) except for \(x\) is matched to a vertex in \(S_A\) and every vertex of \(S_A \setminus V(K)\) is matched to a vertex of \(S_B\) under \(M\), we have that \(|S_B| - 1 = |S_A| - k\). Since \(S_A = N(S_B)\), we have that \(|N(S_B)| = |S_B| + k - 1\). By the brace property then, either \(k \geq 3\) or \(N(S_B)\) is all of \(A\), in which case we still have that \(k \geq 3\) since \(|V(K) \cap A| \geq 3\).
So there are three leaves of S in $A \cap V(K)$, say k_1, k_2, k_3. Let y be the unique vertex that belongs to all three subpaths of S from k_i to k_j for $i, j \in \{1, 2, 3\}$. Then the unique paths in S between y and k_1, k_2 and k_3 are vertex-disjoint. If we reverse M along the unique path between y and x in S to find a new matching M', then these three paths are also M'-alternating, as desired. \square

While snars are useful tools, there are times when we need something that is less destructive to the matching. We provide the following lemma which is a generalization of (4.1) from [42]:

Lemma 4.2.2. Let G be a brace with bipartition (A, B) and let (K, M) be a skein. Let $X \subseteq V(K) \cap A$ be non-empty and let $N = N(X) \cap V(K)$. Suppose that $|X| \geq |N| - 1$. Let $Y = B \setminus (N \cup V(M))$ and suppose Y is not empty. Then there exists an M-alternating path P in G with ends x and y with $x \in X$, $y \in Y$ and P vertex-disjoint from $V(K)$ except at its ends.

Proof. Let S be the set of all vertices reachable by M-alternating paths starting in X vertex-disjoint from $V(K)$ except at its ends. Let $S_A = S \cap A$ and $S_B = S \cap B$. Then the neighbors of S_A are exactly S_B, so we must have that either $|S_B| \geq |S_A| + 2$ or that $S_B = B$ since G is a brace. In the latter case, since Y is not empty, this gives the desired result. So we may assume that $|S_B| \geq |S_A| + 2$. Then $|S_B \setminus N| \geq |S_A \setminus X| + 1$. If every vertex in $|S_B \setminus N|$ were matched, then we would have $|S_A \setminus X| \geq |S_B \setminus N|$, so some vertex in $|S_B \setminus N|$ is unmatched which completes the proof. \square

When we have an H-skein and a snarl with ends in A landing on subdivided edges of the base of the skein, we would like to discuss the A-ends of those edges. To facilitate this, we introduce the following two definitions:

Definition. Let $v \in V(G)$ be a vertex of degree 2 with neighbors a, b. Then the process of bicontracting v is the deletion of v and the identification of a and b.
Note that bicontraction may create parallel edges or loops, though we only apply it in the context of bipartite graphs in which case loops do not result.

Definition. Let \((K, M)\) be a skein. Let \(P\) be an odd segment of \(K\) with ends \(a \in A, b \in B\). Suppose \((s, P_1, P_2, P_3)\) is a snarl with an end \(v \in P \cap B\). Then we say that \(v\) leans to \(b\). The width of a snarl is the number of different vertices its ends lean toward.

To illustrate this definition, we include in Figure 4.1 a snarl of width 2. We show in Theorem 4.2.5 that we may choose our snarls to have width at least 2, but begin with an illustrative lemma.

![Figure 4.1: A snarl of width 2 in a weave](image)

Lemma 4.2.3. Let \((K, M)\) be a maximal skein in a brace \(G\) with bipartition \((A, B)\). Let \(Q\) be a segment in \(K\) with ends \(u\) and \(v\). Let \((s, P_1, P_2, P_3)\) be a snarl for \((K, M)\) with ends \(x, y, z\) with \(s \in B, \{x, y, z\} \subseteq V(Q)\). Let \(H = K \setminus (Q \setminus \{u, v\})\). Then there exists a maximal skein \((K', M')\) and a path \(Q'\) with ends \(u\) and \(v\) and each internal vertex of degree 2 in \(K'\) contained in \(K'\) such that \(K' = H \cup P'\). Further, there exists a snarl \((s', P'_1, P'_2, P'_3)\) for \((K', M')\) with ends \(x', y', z'\) such that \(s' \in B, x' \in V(Q'), y' \in V(H) \setminus V(Q'),\) and \(z' \in V(K')\).

Proof. We proceed by means of contradiction. Suppose the outcome of the theorem is false. We may assume that, in order along \(Q\), the vertices of the path read \(u, x, y, z, v\).
Then choose the skein and snarl subject to the above such that $|uQx| + |zQv|$ is as small as possible.

Let $X = B \cap (V(P_1) \cup V(P_2) \cup V(P_3) \cup V(xQ_1z))$. Let $S = K \cup P_1 \cup P_2 \cup P_3$. Note that in S, the number of neighbors of vertices of X is exactly $|X|$, so we may apply Lemma 4.2.2 to find an M-alternating path R from $a \in X$ to $b \not\in N(X)$ unmatched under M.

Suppose $b \not\in V(Q)$. If $a \in yQx$, then take $s' = a, x' = x, y' = y, z' = b, P'_1 = uQx, P'_2 = uQy, P'_3 = R, Q' = vQyP_2sP_1xQa$ and everything else stays the same. Then this either increases the heft of our skein if w is an unmatched vertex not in K (because s is now counted in the heft and we can modify M to match a along this new path) or fulfills the conditions of the theorem if $b \in V(H)$. Note that it is impossible to find a skein of larger heft by the maximality of (K, M). The argument for $a \in yQz$ is nearly identical, so we omit it. If $a \in P_1$, take $s' = a, x' = x, y' = y, z' = b, P'_1 = aP_1x, P'_2 = aP_1sP_2y, P'_3 = R$ and the rest as before. Note that a similar argument works for $a \in P_2$ or $a \in P_3$.

So we may assume that $b \in V(Q_1)$. We argue for $b \in V(xQu)$ but note that similar reasoning works for $b \in V(vQz)$. So assume $b \in V(xQu)$. If $a \in V(P_1)$, take $x' = b, P'_1 = sP_1aRb$ and everything else the same to decrease $|uQx'| + |zQv|$ which is a contradiction. If $a \in V(P_2)$, take $s' = a, x' = b, y' = y, z' = z, P'_1 = R, P'_2 = aP_2y, P'_3 = aP_2sP_3z$ and everything else the same to again decrease $|uQ_1x'| + |zQ_1v|$. Note that $a \in V(P_3)$ is nearly identical. For $a \in V(yQx)$, take $s' = s, x' = b, y' = y, z' = z, Q' = vQaRbQu, P'_1 = sP_1xQb, P'_2 = P_2, P'_3 = P_3$. Finally, if $a \in V(zQy)$, take $s' = s, x' = b, y' = a, z' = z, Q' = vQaRbQu, P'_1 = sP_1xQ_1b, P'_2 = sP_2yQ_1a, P'_3 = P_3$. In both of these cases, we reduce $|uQ_1x'| + |zQ_1v|$, which is a contradiction and completes the proof.

Let H be a 3-regular graph and let (K, M) be an H-skein in a bipartite graph.
with bipartition \((A,B)\). Let \(v \in V(K) \cap B\) be a branch-vertex of \(K\). Let \(Q\) be the union of the segments of \(K\) incident with \(v\) and let \(\sigma\) be a snarl for \((K,M)\). By a \(v\)-span of \(\sigma\) we mean the smallest connected subgraph of \(Q\) that includes all the ends of \(\sigma\) that belong to \(Q\). The interior of a \(v\)-span is the set of all vertices that have degree at least two in the \(v\)-span.

In what follows we will often have a skein \((K,M)\) perhaps additionally with some number of snarls the union of whose breadths is \(S\). Let \(H = K \cup S\). Let \(P\) be a union of \(H\)-paths and \(Q\) be a subgraph of \(H\). Then by \(H + P - Q\) we mean the graph obtained from \(H \cup P\) by deleting all edges of \(Q\) and then deleting all resulting isolated vertices. In the cases we consider, this resulting graph will be skein of some fixed pattern or the union of a skein and a snarl; in the latter case we additionally specify the root of the snarl, from which the skein and snarl may be uniquely determined. We will refer to this as the root of \(H + P - Q\). A typical application will be when \(P\) and \(Q\) are path, but we will need more complicated choices. In these applications, we may need to alter \(M\) by an application of Lemma 4.2.1 and additionally we will grow the matching \(M\) maximally in the complement of the resulting hex; in each case there will be a natural way to do this since \(P\) and \(Q\) will typically be the unions of \(M\)-alternating paths. For the convenience of the reader, when the resulting skein is a weave, we will additionally specify the feet of the hexes that we find and refer to them as the feet of \(H + P - Q\).

Lemma 4.2.4. Let \(H\) be a bipartite 3-regular graph and let \((K,M)\) be a maximal \(H\)-skein in a brace \(G\) with bipartition \((A,B)\). If \(M\) is not a perfect matching of \(G \setminus V(K)\) then there exists a maximal \(H\)-skein \((K',M')\) of the same heft as \((K,M)\) and a snarl \(\sigma = (s,P_1,P_2,P_3)\) for \((K',M')\) such that \(s \in B\) and either

1. \(\sigma\) has width three or

2. \(\sigma\) has width two and there exist a branch-vertex \(v \in V(K') \cap A\) of \(K'\) and an
Proof. Since M is not perfect and G and K both contain perfect matchings (since G is a brace and K is an odd subdivision of a bipartite three-regular graph) there exists a vertex $s \in B \setminus V(K)$ that is unmatched by M. Let S be the set of all vertices of B that can be reached from s by an M-alternating path.

Let $x, y \in V(K)$ be the neighbors of vertices in S. Then we say that a path T with ends x and y is an S-arch if there exists a vertex $t \in S$ and two M-alternating paths T_1, T_2 with ends t and x, y respectively such that $T = T_1 \cup T_2$. Note that for any two neighbors of S, there is an S-arch, T, provided by Lemma 4.2.1 (up to an alteration of M) and that the modified matching saturates every vertex of $S \cup N(S) - V(K) - T$.

Let A_0 be the set of all branch-vertices of K that belong to A. Let $v \in A_0$ and let Q be the union of the segments of K incident with v. By a v-span of S we mean the smallest connected subgraph of Q that includes all the neighbors of vertices in S that belong to Q. Let J denote the v-span. By a v-antispan we mean the unique subgraph L of Q such that L has no isolated vertices, $L \cup J = Q$, and $E(J) \cap E(L)$ is empty.

Choose K, M, s such that

(i) the number of vertices in A_0 with non-null v-span is maximum, and, subject to
(ii) the union of all v-antispan over all $v \in A_0$ is minimum.

Let A_1 be the set of all vertices $v \in A_0$ such that the v-span is non-null. Then A_1 is not empty by Lemma 4.2.1. We may assume that $|A_1| \leq 2$, since otherwise the lemma holds by Lemma 4.2.1. Let X be the union of S and all vertices that
belong to $B \cap V(J)$ for some v-span J, where $v \in A_1$. Since $|X| \leq |N(X)| + 1$, by Lemma 4.2.2 we can find an M-alternating path R with an end $u \in X$ and another end w in $V(G) \backslash (V(M) \cup N(X))$. Suppose $u \in S$. Then $w \notin V(G) \backslash V(K)$ since we have an M-alternating path between s and w which would contradict the maximality of M. If $w \in V(K)$, then we improve either (i) or (ii) immediately. It follows that $u \in V(X) \backslash S$.

Then u lies in the v-span J of some $v \in A_1$. Let the segments incident with v be Q_1, Q_2, Q_3, their union be Q_0, and their ends be, respectively a, b, c. Without loss of generality, we may assume $u \in J \cap Q_1$. Let x be the leaf of J on uQ_1a.

By the symmetry between Q_2 and Q_3, we may assume $w \notin Q_3 \backslash \{v\}$. Let y be another leaf of J chosen such that y is not on Q_2 if possible. Let T be an S-arch with ends x and y and let M_1 be a matching in $G \backslash V(K \cup T)$, as provided by Lemma 4.2.1. Let $K' = K + T - xQ_1y$ if $y \in V(Q_1)$ and $K' = K + T - vQ_1x$ if $y \notin V(Q_1)$. Then by using edges of xQ_1y or vQ_1x, the matching M_1 can be enlarged to a matching M' in $G \backslash (V(K') \cup \{u\})$ such that (K', M') is a skein of the same heft as (K, M).

If $|A_1| = 1$, then the triple K', M', u contradicts the choice K, M, s. Indeed $w \in V(K)$ by the maximality of M; if $w \notin V(Q_0)$, then (i) is violated and otherwise (ii) is violated given that $w \notin V(Q_3) \backslash \{v\}$, and, if $y \in V(Q_2)$, then Q_3 is a subgraph of the v-antispan of S by the choice of y.

Thus $|A_1| = 2$. If $w \notin V(K)$, then (K', M') has larger heft than (K, M). If $w \notin V(Q_0)$, the path R satisfies (2) of the lemma and we can find an appropriate snarl in S by Lemma 4.2.1.

Thus we may assume $w \in V(Q_0)$. Now we redefine K' as $K' = K + R - uQ_1w$ if $w \in V(Q_1)$ and $K' = K + R - uQ_1v$ otherwise (that is, $w \in V(Q_2) \backslash \{v\}$), and we let M' be the matching obtained from $M \backslash E(R)$ by adding a perfect matching of $uQ_1w \backslash \{u, w\}$ or $uQ_1v \backslash \{u, v\}$ respectively. Then (K', M') is an H-skein of the same heft as (K, M), and the triple K', M', s contradicts the choice of K, M, s unless w
and y both belong to $Q_2 \setminus \{v\}$.

Thus we may assume $w, y \in V(Q_2) \setminus \{v\}$ and hence Q_3 is a subgraph of the v-antispan. We now choose K, M, s, u, w, R subject to the above such that

(iii) the length of wQ_2b is minimum.

Let $X' = X \cup ((yQ_2w \cup V(R) \cap B)$. Then $|N(X')| = |X'| + 1$, so by Lemma 4.2.2 we can find an M-alternating path, P, with one end $p \in X'$ and the other end $q \in V(G) \setminus (V(M) \cup N(X'))$. Let v^* be the vertex of A_1 other than v and J^* its span. As before, we cannot have $p \in S$ and by the preceding arguments and (iii) we cannot have $p \in V(R)$, so we may assume $p \in V(J \cup J^*)$. If $p \in V(J^*)$, then by the preceding arguments the path P is positioned in the same way relative to J^* as the path R is positioned relative to J, thus making J and J^* symmetric. Let y' and Q_2' be the symmetric images of y and Q_2 in J^*. Let $X'' = X' \cup ((y'Q_2q \cup V(P) \cap B)$. But then $|N(X'')| = |X'| + 1$, so by another application of Lemma 4.2.2, we find yet another path P' with ends $p' \in X''$ and $q' \in V(G) \setminus (V(M) \cup N(X''))$, and, from the newly gained symmetry between J and J^* we may assume that $p' \in J$. But now the path P' can play the role of P and so we may assume that $p \in V(J)$.

Suppose that $p \in vQ_2y$. Then by the above arguments, we must have $q \in xQ_1a$. Now we redefine K' as $K' = K + (R \cup P) - (uQ_1q \cup pQ_2w)$, and we let M' be the matching obtained from $M \setminus E(R \cup P)$ by adding a perfect matching of $uQ_1q \cup pQ_2w \setminus \{u, w, p, q\}$. Then (K', M') is an H-skein of the same heft as (K, M), and the triple K', M', s violates (ii).

So $p \in yQ_2w$. Let T be an S-arch with ends x and y and let M_1 be a matching in $G \setminus V(K \cup T)$, as provided by Lemma 4.2.1. Then q lies in one of $V(G \setminus K), V(K \setminus Q_0), Q_1, Q_2, Q_3$. Let C be, respectively, $uQ_1x \cup yQ_2w, uQ_1v, vQ_2p \cup uQ_1q, pQ_2w, qQ_3vQ_2p \cup uQ_1v$. Let D be, respectively, $T \cup R, R, P \cup R, P, P \cup R$. Let X_C be the vertices of degree one in C and M_C be a perfect matching in $C \setminus X_C$. Let M' be the matching obtained from $M \setminus E(D)$ by adding M_C if $q \in V(K)$. If $q \in V(G \setminus K)$, let M' be the
matching obtained from \(M\setminus E(T \cup R)\) by adding \(M_C\) and a perfect matching of \(P\).

Then let \(K' = K + D - C\). Note that \((K', M')\) has at least the same heft as \((K, M)\).

Note that if \(q \in V(G \setminus K)\) the skein \((K', M')\) has larger heft which contradicts the maximality of \((K, M)\). If \(q \in V(K \setminus Q_0)\), then a snarl found in \(S\) from the skein \((K', M')\) by Lemma 4.2.1 satisfies outcome (2) with \(P\) serving as \(R\). If \(q \in V(Q_1 \cup Q_3)\), then the triple \(K', M', w\) contradicts the choice of \(K, M, s\) since it contradicts (ii) above. If \(q \in V(Q_2)\), then the tuple \(K', M', s, u, q, R \cup wQ_2q\) contradicts the choice of \(K, M, s, u, w, R\) since it contradicts (iii).

\(\square\)

A immediate corollary of this is often useful:

Theorem 4.2.5. Let \((K, M)\) be a maximal skein in a brace \(G\) with bipartition \((A, B)\) whose pattern is one of Rotunda, \(K_{3,3}\) or the Heawood graph. Then if \(V(K) \cup V(M) \neq V(G)\), \(G\) contains a maximal weave \((K', M')\) and a snarl for \((K', M')\), \((s, P_1, P_2, P_3)\), of width 2.

Much of the argument for the preceding theorem concerned the behavior of snarls near vertices of degree three. To better understand this behavior we present a preliminary definition and then the following lemmas.

Definition. Let \(G\) be a bipartite graph with bipartition \((A, B)\). Let \(K\) be a subgraph of \(G\) such that no block is a cycle. Let \(u_1, u_2 \in V(K)\) be branch-vertices of the same parity, say \(A\) and let \(P\) be a segment of \(K\) with ends \(u_1\) and \(u_2\). Let \(Q_1, \ldots, Q_k\) be the segments incident with \(u_1\) and \(u_2\) other than \(P\) and let \(Q = \bigcup_{i=1}^k Q_i\). Let \(M\) be a matching in the complement of \(K \cup Q\). Then an augmenting sequence subject to \(M, K, P\) is a sequence of \(M\)-alternating \(Q \cup K\)-paths \(R_1, \ldots, R_m\) disjoint from each other with ends \(v_1, v_2, \ldots, v_{2m}\) such that the ends of \(R_i\) are \(v_{2i-1}\) and \(v_{2i}\) and \(v_1 \in B \cap V(P)\). Further, for every \(i \in \{1, \ldots, m - 1\}\), there exists \(j \in \{1, \ldots, k\}\) and \(h \in \{1, 2\}\) such that \(u_h\) is incident with \(Q_j\), \(v_{2i} \in V(Q_j)\) and \(v_{2i+1} \in u_hQ_jv_{2i}\) and
if \(v_{2i+1} \) and \(v_{2i'+1} \) belong to \(Q_j \) with \(i < i' \) then \(v_{2i+1} \in u_hP_{v_{2i+1}} \). We refer to each \(R_i \) as an augmentation and the length of an augmenting sequence is the number of augmentations it contains.

We show first that augmenting sequences exist.

Lemma 4.2.6. Let \(G \) be a bipartite graph with bipartition \((A, B) \). Let \(K \) be a subgraph of \(G \) such that no block is a cycle. Let \(u_1, u_2 \in V(K) \) be branch-vertices of the same parity, say \(A \) and let \(P \) be a segment of \(K \) with ends \(u_1 \) and \(u_2 \). Let \(Q_1, \ldots, Q_k \) be the segments incident with \(u_1 \) and \(u_2 \) other than \(P \) and let \(Q = \bigcup_{i=1}^k Q_i \). Let \(M \) be a matching in the complement of \(K \cup Q \). Then there exists an augmenting sequence subject to \(M, K, \) and \(P, R_1, \ldots, R_m \) such that the ends of \(R_i, 1 \leq i \leq m \) are \(v_{2i-1} \) and \(v_{2i} \). Further, \(v_{2m} \in V(G) \setminus V(Q \cup P \cup M) \).

Proof. We define the span of an augmenting sequence as follows. Let \(R = R_1, \ldots, R_m \) be an augmenting sequence subject to \(M, K, \) and \(P \) so that the endpoints of \(R_i \) are \(v_{2i-1} \) and \(v_{2i} \) and so that, for \(i \in \{1, 2, \ldots, 2m\}, v_i \in Q \cup P \). We may assume that each of the \(v_i \in V(Q) \) since otherwise the lemma holds. Let \(T \) be the smallest tree contained in \(Q \cup P \) that contains \(P \) and each of the \(v_i, i \in \{1, 2, \ldots, 2m\} \). Then the span of \(R \) is \(V(T) \). Let \(R' \) be an \(M \)-alternating \(P \cup Q \) path with one end in \(V(T) \cap B \), disjoint from \(R \). Then it is clear that there exists an augmenting sequence subject to \(M \) and \(P \) that contains \(R' \) and whose paths are a subset of the paths of \(R \) along with \(R' \).

Let \(S \) be the union of the spans of all augmenting sequences subject to \(P \) and \(M \) and \(R \) be the union of all the paths in those augmenting sequences. Let \(X = V(S \cup R) \cap B \). Then \(|N(X)| = |X| + 1 \), so by Lemma 4.2.2, there exists an \(M \)-alternating path, \(R' \), with one end, \(v \in V(S \cup R) \cap B \) and the other, \(v' \) in \(V(G) \setminus V(S \cup R \cup M) \). Since there is an augmenting sequence subject to \(P \) and \(M \) containing \(R' \) (either by the above argument or by rerouting one of the previous paths along \(R' \)), \(v' \) must be
in the span of all augmenting sequences subject to P and M which is a contradiction.

\[\square \]

We now make use of augmenting sequences to better understand the neighborhood of branch vertices of degree 3.

![Figure 4.2: The outcomes of Lemma 4.2.7](image)

Lemma 4.2.7. Let G be a brace with bipartition (A, B), let H be a graph with no vertices of degree two, let (K, M) be a maximal H-skein in G, let $v \in B$ be a branch-vertex of K of degree three, let P_1, P_2, P_3 be the three segments of K incident with v, and let v_1, v_2, v_3, respectively, be their other ends. Let $q \in B \cap V(P_1 \cup P_2)$, let $p \in V(K) \cap A - V(P_1 \cup P_2 \cup P_3)$, and let R be an M-alternating K-path in G with ends p and q. Then there exists a maximal H-skein (K', M'), where K' is obtained from K by replacing the paths P_1, P_2, P_3 by paths P'_1, P'_2, P'_3, respectively, and P'_i has ends v'_i and v_i. Furthermore, there exist an integer i in $\{1, 2\}$, vertices $q' \in V(P_i) \cap B$ and $p' \in V(K') \cap A - V(P'_1 \cup P'_2 \cup P'_3)$, an M-alternating K'-path R' with ends p' and q' and either
(i) vertices $u_1 \in vP'_1q' \cap A$, $u_2 \in V(K') \cap B - V(P'_1 \cup P'_2 \cup P'_3)$ and an M'-alternating $(K' \cup R')$-path with ends u_1 and u_2, or

(ii) vertices $u_1 \in vP'_1q' \cap A$, $u_2 \in P_{3-i} \cap B$, $u_3 \in u2P_{3-i}v \cap A$ and $u_4 \in V(K') \cap B - V(P'_1 \cup P'_2 \cup P'_3)$ and two disjoint M'-alternating $(K' \cup R')$-paths, one with ends u_1 and u_2, and the other with ends u_3 and u_4, or

(iii) vertices $u_1 \in vP'_1q' \cap A$, $u_2 \in q'P_1v' \cap B$, $u_3 \in u2P_1q' \cap A$ and $u_4 \in V(K') \cap B - V(P'_1 \cup P'_2 \cup P'_3)$ and two disjoint M'-alternating $(K' \cup R')$-paths, one with ends u_1 and u_2, and the other with ends u_3 and u_4.

Proof. Let $X = V(K) \cap B - V(P_1 \cup P_2 \cup P_3)$. Let P be the element of $\{P_1, P_2, P_3\}$ containing q. By Lemma 4.2.6, there exists an augmenting sequence R_1, \ldots, R_n subject to P and M such that the ends of R_i are u_{2i-1} and u_{2i} and $u_{2n} \in V(K) \cap B - V(P_1 \cup P_2 \cup P_3)$. Choose v, P_1, P_2, P_3, M and such an augmenting sequence so that the augmenting sequence has as few augmentations as possible and, subject to that, such that as few of the ends of the augmentations lie on P_3 as possible. Note that only $u_1 \in V(vPq)$ since otherwise we immediately have a shorter augmenting sequence. Therefore, if the sequence has length 1 or 2 and avoids R and P_3, we are done, so we may assume it has length at least 3 or includes a vertex of R or P_3. Note that if it has length 1, this doesn’t occur, so we may assume the length of the augmenting sequence is at least 2.

We may assume without loss of generality that q lies on P_1.

Suppose first that $u_2 \in V(R)$. Then $u_3 \in V(qRu_2)$. If $u_4 \in X$, then we take $P'_1 = vP_1u_1R_1u_2RqP_1v_1, R'_1 = u_1R_1q, u'_2 = q, q' = u_2, R' = pRu_2$ to find an appropriate augmenting sequence as desired. Suppose instead that $u_4 \in V(P_2)$. Then we take $q' = u_4, R' = pRu_3R_2u_4$ to find a shorter augmenting sequence having exchanged v_1 and v_2. If $u_4 \in V(P_3)$, take $v' = u_4, P'_1 = u_4R_2u_3RqP_1v_1, P'_2 = u_4P_3vP_2v_2, P'_3 = u_4P_3v_3, q' = v, R' = pRu_2R_1u_1P_1v, u'_1 = u_5$ to find a shorter augmenting sequence.
Finally, if \(u_4 \in V(P_1) \), take \(q' = u_4, R' = pRu_3R_2u_4 \) to find a shorter augmenting sequence.

Suppose that \(u_2 \in V(P_3) \). Then \(u_3 \in V(vP_2u_2) \). Then take \(v' = u_2, P'_1 = u_2R_1u_1P_1v_1, P'_2 = u_2P_3vP_2v_2, P'_3 = u_2P_3v_3, u'_2 = v, R'_1 = u_1P_1v \) to find an augmenting sequence of the same length with fewer ends on \(P_3 \).

So we may assume the length of the augmenting sequence is at least 3.

Suppose that \(u_2 \in V(qP_1v_1), u_3 \in V(qP_1u_3) \). Suppose \(u_4 \in V(R) \). Then take \(P'_1 = vP_1u_1R_1u_2P_1v_1, q' = u_2, R'_2 = pRu_4R_2u_3P_1u_2, R'_3 = u_1P_1qRu_5R_3 \) to find a shorter augmenting sequence. If \(u_4 \in V(qP_1v) \), then replacing \(P_1 \) by \(vP_1u_3R_2u_4P_1v_1 \) and \(R_1 \) by \(u_1R_1u_2P_1u_5R_3 \) reduces the length of the augmenting sequence. If \(u_4 \in V(P_3) \), then take \(v' = u_4, u'_1 = u_3, u'_2 = u_2, u'_3 = u_1, u'_4 = v, P'_1 = u_4R_2u_3P_1u_1R_1u_2P_1v_1, P'_2 = u_4P_3vP_2v_2, P'_3 = u_4P_3v_3, R'_1 = R_2, R'_2 = u_1P_1v \) to find the same augmenting sequence, but with \(u_4 \in V(P_2) \). So we may assume \(u_4 \in V(P_2) \). Then take \(q' = u_4, P'_1 = vP_1u_1R_3u_2P_1v_1, R'_2 = pRqP_1u_3R_2u_4 \) to find a shorter augmenting sequence having exchanged \(v_1 \) and \(v_2 \).

So we may assume that \(u_2 \in V(P_2) \). Note that if \(u_2 \) were in \(V(P_3) \), taking \(v' = u_2, P'_1 = u_2R_1u_1P_1v_1, P'_2 = u_2P_3vP_2v_2, P'_3 = u_2P_3v_3 \) to find the same situation except with \(u_2 \in V(P_2) \). If \(u_4 \in V(qP_1v) \), then take \(v' = u_4, u'_1 = u_5, P'_1 = u_4P_1v_1, P'_2 = u_4P_1u_1R_1u_2v_2, P'_3 = u_4R_2u_3P_2vP_3v_3 \) which gives a shorter augmenting sequence having exchanged \(v_1 \) and \(v_2 \). Suppose \(u_4 \in V(R) \). Then take \(v' = v, P'_1 = vP_2u_3R_2u_4RqP_1v_1, P'_2 = vP_1u_1R_1u_2P_2v_2, P'_3 = u_4, R'_3 = pRu_4, u'_1 = u_3, u'_2 = u_2, u'_3 = u_1, u'_4 = q, R'_1 = u_2P_2u_3, R'_2 = u_1P_1q \) which gives the previous case. If \(u_4 \in V(P_2) \), we can replace \(P_2 \) by \(vP_2u_3R_2u_4P_2v_2 \) and \(R_1 \) by \(u_1R_1u_2P_2u_5R_3 \) to reduce the length of the augmenting sequence. So we may assume \(u_4 \in V(P_3) \). But then take \(v' = u_2, P'_1 = v_1P_1u_1R_1u_2, P'_2 = u_2P_2v_2, P'_3 = v_3P_3u_4R_2u_3P_2u_2, R'_1 = u_1P_1vP_3u_5R_3 \) which gives a shorter augmenting sequence.

\(\square \)
4.3 Weaves

In the case of skeins patterned after Rotunda and the Heawood graph, Theorem 4.2.5 suffices, but for weaves, we require width 3 snarls.

Before we begin, we provide a lemma that shows an application of bicontraction.

Lemma 4.3.1. Let G be a graph, w a vertex of G of degree two, and let G' be obtained from G by bicontracting w. Let H be a three-regular graph. If G' has an H-skein of heft k, then G contains an H-skein of heft $k + 2$ and if G' contains an H-skein of heft k and a snarl for it of width w, then G also has an H-skein of heft $k + 2$ and a snarl for it of width w.

Proof. Let the neighbors of w be u and v and let x be the vertex of G' obtained by identifying u and v. Suppose G' has a weave (K, M). We present the following argument assuming that G' additionally contains a snarl $\sigma = (s, P_1, P_2, P_3)$ with respect to (K, M) but note that if G does not, then the same argument proves the desired conclusion.

If $x \in V(M \setminus \sigma)$, then let y be its neighbor under M. Then y is adjacent to either u or v, say u, in which case $(K, M \setminus \{xy\} \cup \{uy, uv\})$ along with σ is as desired.

If $x = s$, let the three neighbors of x along P_1, P_2, P_3 be, respectively, p_1, p_2, p_3. Then one of u, v is adjacent to two of $\{p_1, p_2, p_3\}$, say u adjacent to p_1 and p_2. If u is adjacent to p_3, let $P'_3 = P_3$ and otherwise let $P'_3 = uwvP_3$. Then let $M' = M \cup \{uv\}$ and the weave (K, M') and snarl (u, P_1, P_2, P'_3) is as desired.

If $x \in V(P_1 \cup P_2 \cup P_3) \setminus V(K)$, we may assume $x \in V(P_1)$ by symmetry and that x and p_1 are matched under M. Then let $P_1 = s \ldots p_1xq_2 \ldots$. We may assume that u is adjacent to p_1. If u is also adjacent to p_2, let $P'_1 = sP_1p_1up_2P_1$ and $P'_1 = sP_1p_1uwvP_1$ otherwise. Let $M' = M \setminus \{p_1x\} \cup \{p_1u, uv\}$, in which case the weave (K, M') with snarl (s, P'_1, P_2, P_3) is as desired.

So we have that $x \in V(K)$. If x is not a branch vertex of K, then let its neighbors
in K be q_1, q_2 on a segment Q of K where $Q = a...q_1xq_2...b$ where a and b are branch vertices of K. Further, if there exists $i \in \{1, 2, 3\}$ such that x is on P_i, we may assume $i = 1$. Let p be the neighbor of x on P_1. Then one of u, v neighbors at least two of q_1, q_2, p, say u. If u neighbors all three, let $Q' = aQ_1uq_2Qb, P'_1 = sP_1pu, M' = M \cup \{uw\}$. Otherwise if u neighbors q_1 and q_2, let $Q' = aQ_1uq_2Qb, P'_1 = sP_1puwv, M' = M \cup \{uw\}$. Otherwise, if u neighbors q_1 and p or there is no such p, then let $Q' = aQ_1uwvq_2Qb, P'_1 = sP_1pu, M' = M$. Let K' be found from K by replacing Q with Q'. Then (K', M') along with (s, P'_1, P_2, P_3) is a weave and snarl as desired.

So x is a branch vertex of K, so has three neighbors in K, q_1, q_2, q_3 along segments Q_1, Q_2, Q_3. Then we may assume u neighbors q_1 and q_2. Let $Q'_i = uq_iQ_i$ for $i \in \{1, 2\}$. If u neighbors all three, let $Q'_3 = uq_3Q_3$ and $M' = M \cup \{vw\}$ and $Q'_3 = uwvq_3Q_3$, $M' = M$ otherwise. Let K' be formed from K by replacing Q, with Q'_i for $i \in \{1, 2, 3\}$. If, additionally, x has a neighbor p on one of P_1, P_2, P_3, say P_1, we define $P'_1 = sP_1pu$ if u neighbors p, otherwise $P'_1 = sP_1pvwu$ if $v \in V(M')$ and $P'_1 = sP_1pv$ if $v \notin V(M')$. Otherwise, we let $P'_1 = P_1$. Then (K', M') along with (s, P'_1, P_2, P_3) gives the desired weave and snarl.

\Box

If G is a bipartite graph with bipartition (A, B), we often consider subgraphs, H, of G, for example that formed from the edges of a skein and snarl. Let u and v be vertices of G with the same parity, say A, such that there is a segment, P, containing both u and v in H. Then we say that u leans towards v (and v leans towards u) and we refer to the process of bicontracting B vertices of P until we identify u and v as bicontracting u to v. By the above argument, if we can find a particular skein in this new bicontracted graph, we can find a similar skein in G as well. For convenience, if we have a subgraph H of G with $u, x, v \in V(H)$, then if G' is the graph formed by bicontracting x and identifying u and v we will also refer to the natural subgraph of G' formed by this identification as H.

93
Theorem 4.3.2. Let G be a brace with bipartition (A, B). Let (K, M) be a maximal weave of G with feet $v_1, v_2, v_3 \in A, v_4, v_5, v_6 \in B$ and segments Q_{ij} with ends v_i and v_j. Then if $V(K) \cup V(M) \neq V(G)$, G contains a maximal weave (K', M') and a snarl for (K', M'), (s, P_1, P_2, P_3), of width 3.

Proof. By Lemma 4.2.4, we may assume (K, M) contains a snarl (s, P_1, P_2, P_3) with $s \in B$ and ends x, y, z. Let $P = P_1 \cup P_2 \cup P_3$ and let $H = K \cup P$. Further, we may assume that y and z lean toward v_1 and v_2 respectively, $x \in V(Q_{14})$, and there exists a vertex $u \in xQ_{14}v_1$ along with an M-alternating K-path R disjoint from P with ends u and $w \notin V(Q_{14} \cup Q_{15} \cup Q_{16})$. Then w leans to either v_2 or v_3.

If w leans to v_2, then consider the hex $K + R - Q_{24}$ (if $w \notin V(Q_{24})$) or $K + R - v_4Q_{24}w$ (if $w \in V(Q_{24})$). Then (s, P_1, P_2, P_3) can be converted to a snarl of width three for this hex, and hence the lemma holds. Thus we may assume that w leans to v_3.

It follows that $w \in V(Q_{34} \cup Q_{35} \cup Q_{36})$. We claim that we may assume that $w \notin V(Q_{34})$. Suppose otherwise, so $w \in V(Q_{34})$. Consider the graph formed by bicontracting y to v_1, z to v_2, and w to v_3. Then s, v_4, v_5, v_6 are all symmetric, as are y, z, w. In G, the symmetric statement to w not on Q_{34} is that y is not on Q_{14} and z is not on Q_{24}. So if we had $y \notin V(Q_{14})$ or $z \notin V(Q_{24})$, then by appropriately permuting s, v_4, u we would find a snarl and weave in which the corresponding w was not on Q_{34}. Therefore, we may assume that $y \in V(Q_{14})$ and $z \in V(Q_{34})$. Now choose $K, M, s, P_1, P_2, P_3, R$ subject to the above so that $|yQ_{14}v_1| + |zQ_{24}v_2| + |wQ_{34}v_3|$ is as small as possible. Then let $Y = V(P_1 \cup P_2 \cup P_3 \cup v_4Q_{14}y \cup v_4Q_{24}z \cup v_4Q_{34}w) \cap B$. We note that the number of neighbors of Y is $|Y| + 1$, so by Lemma 4.2.2, we can find an M-alternating path with one end in Y and the other in $V(G) \setminus (V(M) \cup N(Y))$. Again by symmetry, we may assume one end of this path lies in P. If the other end leans to v_3, we immediately find a width three snarl. If the other end lies on Q_{14} or Q_{24}, we may reduce the size of $|yQ_{14}v_1| + |zQ_{24}v_2| + |wQ_{34}v_3|$. So the other end lies
on $Q_{15} \cup Q_{16} \cup Q_{25} \cup Q_{26}$, which, replacing y or z by this new vertex, by the same symmetry argument as before means that there is a choice in which w does not lie on Q_{34}. This proves our claim that we may assume that $w \notin V(Q_{34})$.

By the symmetry between Q_{35} and Q_{36}, we may assume that $w \in V(Q_{36})$. We then apply Lemma 4.2.7 with $v = v_3, P_1 = Q_{36}, P_2 = Q_{35}, P_3 = Q_{34}, q = w$ and R as R to find an integer $i \in \{1, 2\}$ and paths P'_i, P'_2, P'_3, R' such that one of the three outcomes of that lemma holds. We may assume that $i = 1$, $P_j = P'_j$ for $j \in \{1, 2, 3\}$ and $R' = R$.

Suppose we have outcome (1). Then there is a vertex $p \in V(v_3Q_{36}w)$ along with a path T and a vertex $q \in V(K) \cap A$ such that T has endpoints p and q. Then we may assume that q leans to one of v_1, v_2, x. Bicontract y to v_1, z to v_2, and q to the vertex to which it leans. Let $Z = R \cup T$. Then, respectively, let X be defined as $Q_{24} \cup Q_{16}, vQ_{14}u \cup Q_{23} \cup Q_{34}, Q_{16} \cup Q_{25}$, in which case the snarls in $H + Z - X$ with root p and feet, respectively, $\{v_1, v_2, x, s, u, v_3\}, \{v_1, v_2, x, s, v_4, v_6\}, \{v_1, v_2, x, s, u, v_4\}$ have width three.

Suppose we have outcome (2). Then there is a vertex $p \in V(v_3Q_{36}w)$ along with a path T and a vertex $q \in V(Q_{35})$ such that T has endpoints p and q. In addition, we have a path S with endpoints $r \in V(qQ_{35}v_3)$ and t. Let $Z = R \cup T \cup S$. Then t leans to one of $\{v_1, v_2, x\}$. Let X be, respectively $v_1Q_{14}u \cup rQ_{35}q \cup Q_{15}, Q_{16} \cup Q_{24} \cup Q_{25}, v_1Q_{14}u \cup xQ_{14}v_4 \cup Q_{25}$. Then the snarl in $H + Z - X$ with roots, respectively v_4, u, r and feet respectively $\{v_1, v_2, w, s, p, v_6\}, \{v_2, v_3, q, s, r, p\}, \{v_1, v_2, w, s, p, v_6\}$ have width three.

So we must have outcome (3). Then there is a vertex $p \in V(v_3Q_{36}w)$ along with a path T and a vertex $q \in V(wQ_{36}v_6)$ such that T has endpoints p and q. In addition, we have a path S with endpoints $r \in V(wQ_{36}q)$ and t. Let $Z = R \cup T \cup S$. Then t leans to one of $\{v_1, v_2, x\}$. Note that if t leans to v_2, replacing Q_{36} by $v_3Q_{36}pTqQ_{36}v_6$ and R by $uRwQ_{36}rSv_2$, we have an M-alternating path between u and v_2 which is a case.
we have already solved. If \(t \) leans to \(v_1 \) or \(x \), let \(X \) be, respectively \(v_1 Q_{14} u \cup Q_{16} \cup Q_{25}, x Q_{14} u \cup Q_{16} \cup Q_{24} \). Then the snarl in \(H + Z - X \) with roots respectively \(v_4, v_5 \) and feet respectively \(\{ v_1, w, q, s, p, r \}, \{ x, w, q, s, p, r \} \) have width three.

\(\square \)

4.4 The Main Result

In this section we complete the proof of the main theorem of this chapter:

Theorem 4.4.1. Let \(G \) be a nonplanar brace. Then \(G \) contains one of \(K_{3,3} \), the Heawood graph, or Rotunda as a matching minor.

We begin with the following two lemmas that show, in some sense, that \(K_{3,3} \) is the most important of these matching minors. For reference, we include in Figures 4.3 and 4.4 various representations of the Heawood and Rotunda graphs.

Lemma 4.4.2. Let \(G \) be a brace with bipartition \((A, B) \). Let \((K, M) \) be a skein whose pattern is the Heawood graph such that \(V(G) \neq V(K) \cup V(M) \). Then \(G \) contains a weave \((K', M') \) of at least the same heft as \((K, M) \).

Proof. We view the Heawood graph as an odd hex along with two additional vertices, each of which has three neighbors on segments of the hex. Let the feet of the hex be \(v_1, v_2, v_3 \in A, v_4, v_5, v_6 \in B \) and the segments be \(Q_{ij} \) with ends \(v_i \) and \(v_j \) for \(i \in \{1, 2, 3\} \) and \(j \in \{4, 5, 6\} \). Let the two vertices not in the hex be \(s_1 \in A, s_2 \in B \). The neighbors of \(s_1 \) are \(x_1, x_2, x_3 \), the neighbors of \(s_2 \) are \(y_1, y_2, y_3 \) and path \(P_i \) has ends \(s_1 \) and \(x_i \) and \(R_i \) has ends \(s_2 \) and \(y_i \). Finally, \(x_1 \in V(Q_{14}), x_2 \in V(Q_{25}), x_3 \in V(Q_{36}) \). We note also that the Heawood graph is vertex-transitive.

If \(V(G) \neq V(K) \cup V(M) \), we can find a vertex \(t \in V(G) \backslash (V(K) \cup V(M)) \) along with an \(M \)-alternating paths \(S \) with ends \(t \) and \(z \in V(K) \). By definition, \(z \) leans towards one of the vertices of \(V(K) \), so, since they are all the symmetric, we may assume it is \(s_1 \) and, by Lemma 4.3.1, we may assume \(z = s_1 \). But then we consider
Figure 4.3: Three drawings of the Heawood graph

the hex defined above with feet v_i, $1 \leq i \leq 6$ with M grown maximally to find a weave of the same heft as (K, M). □

Lemma 4.4.3. Let G be a brace with bipartition (A, B). Let (K, M) be a skein whose pattern is Rotunda. Then if $V(K) \cup V(M) \neq V(G)$, G contains a weave (K', M') of at least the same heft as (K, M).

Proof. We view Rotunda as a four-separation along with three vertex disjoint 4-cycles. We will refer to the 4-cycles as cores and to the vertices of the four-separation as pivots. We label the branch vertices corresponding to the vertices of the 4-cycles
in order as a_i, b_i, c_i, $1 \leq i \leq 4$ with a_1 and $a_3 \in A$ and a_2 and $a_4 \in B$ and similarly for the others. The pivots are x_1, x_2, x_3, x_4 where there is a segment between x_i and a_i, b_i, c_i for $1 \leq i \leq 4$. The segment from x_i to v_i, $1 \leq i \leq 4, v \in a, b, c$ is Q_{vi} and the segment between v_i and v_{i+1} is P_{vi} where the addition is taken modulo 4.

Since $V(K) \cup V(M) \neq V(G)$, we can find a vertex $t \in V(G) \setminus (V(K) \cup V(M))$ along with 2 M-alternating paths, T_1, T_2 with ends t and respectively $z_1, z_2 \in V(K)$. Note that by Theorem 4.2.5, we can choose t and the paths so that z_1 and z_2 do not both lean to the same vertex. We may assume that $t \in A$. Note that if either z_1 or z_2 leans towards b_2, we may assume $z_1 = b_2$ by Lemma 4.3.1. Then let $X = P_{a_1} \cup P_{a_4} \cup Q_{a_1} \cup Q_{a_3} \cup Q_{b_2} \cup P_{b_1} \cup P_{b_2}$ in which case $K - X$ with feet $x_4, c_1, c_3, c_2, b_4, c_4$ gives a weave with the same heft as (K, M).

By symmetry, then, we must have that z_1 and z_2 lean towards, respectively, x_1 and x_3, so, by Lemma 4.3.1, we may assume that $z_1 = x_1$ and $z_2 = x_3$. Let $T = T_1 \cup T_2$. Let X be the union of the segments of K incident with $\{a_1, a_2, a_3, a_4, c_3\}$. Then $K + T - X$ is a hex with feet $s_2, x_3, v_5, y_2, y_3, v_2$ and the corresponding weave has the same heft as (K, M).

\[\square\]
We are now prepared to prove the main result.

Theorem 4.4.4. Let G be a brace. Suppose G contains an odd subdivision of $K_{3,3}$. Then G contains a subgraph K isomorphic to an odd subdivision of either $K_{3,3}$, Rotunda, or the Heawood graph with a perfect matching in the complement.

Proof. Choose K, M so that K is an odd subdivision of $K_{3,3}$, rotunda, or the Heawood graph, and M is a maximal matching in its complement. Let the bipartition of G be (A, B). Select K, M so that $X = V(G) \setminus V(K \cup M)$ is as small as possible and, subject to that, K is a hex if possible. If $|X| = 0$, we are done. Note that $|X|$ is even and that there are the same number of A and B vertices in X.

Note that by our choice of K and Lemmas 4.4.2 and 4.4.3, we may assume that K is a hex. Let the feet of K be $v_1, v_2, v_3 \in A, v_4, v_5, v_6 \in B$ and the segments be Q_{ij} with ends v_i and v_j. Then by Theorem 4.3.2, G contains a snarl (s, P_1, P_2, P_3) with $s \in B$ and ends x, y, z with $x \in V(Q_{14} \cup Q_{15} \cup Q_{16}), y \in V(Q_{24} \cup Q_{25} \cup Q_{26})$ and $z \in V(Q_{34} \cup Q_{35} \cup Q_{36})$.

We view the structure formed by K and this snarl as a skein (with the matching changed in the natural way), (K', M'). Then by Lemma 4.2.1 and Lemma 4.2.3, there exists a snarl with respect to this skein, not all of whose ends are on a path in K' with all interior vertices of degree 2 in K'. Let this second snarl be (t, R_1, R_2, R_3), $t \in A$ with ends a, b, c. Note that the ends of this snarl are not in $P_1 \cup P_2 \cup P_3$ since otherwise we would have an M-alternating path between s and t which contradicts the maximality of (K, M). Let $H = K \cup P_1 \cup P_2 \cup P_3 \cup R_1 \cup R_2 \cup R_3$.

Suppose there exists $i \in \{1, 2, 3\}, j \in \{4, 5, 6\}, p \in \{a, b, c\}$ so that $v_jQ_{ij}p \cap \{x, y, z\}$ is empty. Then we may assume $i = 1, j = 4, p = a$. Then by Lemma 4.3.1 we may assume $x = v_1, y = v_2, z = v_3$, and $a = v_4$. Let $Y = Q_{14} \cup Q_{24} \cup Q_{34} \cup R_1 \cup R_2 \cup R_3$. Then $H - Y$ is a hex with feet $v_1, v_2, v_3, s, v_5, v_6$ and the resulting weave has greater heft than (K, M).

So we may assume that a, b, c fall on a subset of the segments on which x, y, z fall.
Suppose there exists \(i_1, i_2 \in \{1, 2, 3\}, j \in \{4, 5, 6\} \), \(i_1 \neq i_2 \) such that one of \(a, b, c \) lies on \(Q_{i_1j} \) and another on \(Q_{i_2j} \). We may assume \(i_1 = 1, i_2 = 2, j = 4 \) and \(a \) lies on \(Q_{14} \), \(b \in V(Q_{24}) \). Then we may assume \(x \in V(v_4Q_{14}a), y \in V(v_4Q_{24}b) \). By Lemma 4.3.1, we may assume \(z = v_3 \). Let \(Y \) be \(R_3 \cup Q_{25} \cup Q_{26} \cup v_2Q_{24}b \cup Q_{15} \). Then \(H - Y \) is a hex with feet \(s, a, v_1, x, y, v_3 \) and the resulting weave has greater heft than \((K, M)\).

There are then (up to symmetries) only two options for which of the \(Q_{ij} a, b, c \) are on. Either they land on \(Q_{14}, Q_{25}, Q_{36} \) up to symmetry, or \(a \) and \(b \) are on \(Q_{14} \) and \(c \) is on \(Q_{25} \). The first case, along with \(P_1, P_2, P_3 \) is exactly a subdivision of the Heawood graph which gives a skein of larger heft. So we may assume the second case.

So we have \(Q_{14} = v_1...a...b...x...v_4 \) and \(Q_{25} = v_2...c...y...v_5 \) and \(z \) is on \(Q_{3j} \) for some \(j \in \{4, 5, 6\} \). Let \(T \) be the set of vertices in \(A \) reachable from \(t \) by \(M \)-alternating paths. Note that by the preceding arguments, all of the neighbors of \(T \) lie on \(xQ_{14}v_1 \cup yQ_{25}v_5 \cup zQ_{3j}v_3 \). For \(i \in \{1, 2, 3\}, j \in \{4, 5, 6\} \), let \(a_{ij} \) be the neighbor of \(T \) closest to \(v_i \) on \(Q_{ij} \) and \(b_{ij} \) the neighbor of \(T \) closest to \(v_j \) on \(Q_{ij} \). Let \(\phi_{ij} = |v_iQ_{ij}a_{ij}| + |v_jQ_{ij}b_{ij}| \) if \(a_{ij} \) and \(b_{ij} \) exist and are distinct and \(\phi_{ij} = |Q_{ij}| \) otherwise. Similarly, let \(W_{ij} = a_{ij}Q_{ij}b_{ij} \) if \(a_{ij} \) and \(b_{ij} \) exist and are distinct and \(\phi_{ij} = 0 \) otherwise. Let \(\phi = \Sigma_{i \in \{1, 2, 3\}, j \in \{4, 5, 6\}} \phi_{ij} \) and \(W = \bigcup W_{ij} \). Choose \(K, s, t \) subject to the above so that \(\phi \) is minimum.

Let \(W_A = W \cap A \) and let \(T^* = T \cup W_A \). Then the number of neighbors of \(T^* \) is at most \(|T| + 1 \) since at most two of the \(W_{ij} \) are non-empty. So we apply Lemma 4.2.2 to find a vertex \(u \in T^* \) and an \(M \)-alternating path \(S \) with ends \(u \) and \(w \in V(G) \setminus (N(T^*) \cup V(M)) \). Note that \(u \) is not in \(T \) by our choice of \(T \) (since otherwise we can either find an \(M \)-alternating path between two vertices unmatched under \(M \) or decrease \(\phi \)). Then without loss of generality, we may assume that \(u \in V(Q_{14}) \), \(w \notin V(Q_{14}) \) (since otherwise we replace \(Q_{14} \) by \(v_4Q_{14}uSwQ_{14} \) and reduce \(\phi \)) and that we can find \(t, R_1, R_2, R_3 \) with ends \(a, b, c \) as described above and disjoint from \(S \).

Note that if we ignore \(R_3 \) and \(S \), \(u \) and \(t \) are symmetric. Since the end of \(R_3 \) must lie on either \(yQ_{25}v_2 \) or on the segment containing \(z \) (so long as it is not \(Q_{34} \)) as argued
above, the same must be the case for the end of S. Note that $w \in zQ_{35}v_5$ is exactly a subdivision of Rotunda which gives a skein of larger heft. If $w \in yQ_{25}v_2$, by Lemma 4.3.1, we may assume $z = v_3$ and $w = c$. The two cases are $w \in yQ_{25}v_2, w \in zQ_{36}v_6$. Let Z be, respectively, $v_4Q_{14}x \cup Q_{24} \cup Q_{34} \cup P_3 \cup Q_{34} \cup Q_{35} \cup Q_{36} \cup Q_{16} \cup Q_{26} \cup v_2Q_{25}c$ or $R_1 \cup v_3Q_{36}w \cup Q_{16} \cup Q_{24} \cup bQ_{14}u$. Then the hex $H + S - Z$ with feet $\{u, y, t, a, b, c\}, \{s, c, v_5, x, y, z\}$ respectively gives rise to a weave of larger heft which is a contradiction.

definition. Let (K, M) be an H-skein and let R be an M-alternating path with ends $u, v \in V(K)$, otherwise vertex disjoint from K. Let x and y be the vertices of degree at least 3 in K such that u leans to x and v to y. Then we say that R is a skip if there is no path between x and y in K with all the interior vertices of degree exactly 2. The ends of the skip are x and y.

We will be discussing the Heawood graph in several of the following lemmas. In the interest of conserving space, we use the following canonical notation unless we specify otherwise. We view the Heawood graph as an odd hex along with two additional vertices, each of which has three neighbors on segments of the hex. Let the feet of the hex be $v_1, v_2, v_3 \in A, v_4, v_5, v_6 \in B$ and the segments be Q_{ij} with ends v_i and v_j for $i \in \{1, 2, 3\}$ and $j \in \{4, 5, 6\}$. Let the two vertices not in the hex be $s_1 \in A, s_2 \in B$.

4.5 Rotunda and Heawood

One of the outcomes of Theorem 4.1.2 is a perfect Rotunda or Heawood-skein. We would like to better understand these outcomes; specifically, we would like to understand when they contain perfect weaves. We note that these results are also contained in [42] in which they are used to develop the algorithm to find a Pfaffian orientation for a bipartite graph, though, particularly in the case of Rotunda, the proofs contained there are significantly more difficult.
The neighbors of \(s_1 \) are \(x_1, x_2, x_3 \), the neighbors of \(s_2 \) are \(y_1, y_2, y_3 \) and path \(P_i \) has ends \(s_1 \) and \(x_i \) and \(R_i \) has ends \(s_2 \) and \(y_i \). Finally, \(x_1 \in V(Q_{14}), x_2 \in V(Q_{25}), x_3 \in V(Q_{36}). \)

Further, note that in the Heawood graph every vertex of the same parity is symmetric, as is every pair of non-adjacent vertices of opposite parity. This leads to the following lemma for the Heawood graph:

Lemma 4.5.1. Let \(G \) be a brace with bipartition \((A, B)\) and \((K, M)\) a perfect Heawood-skein in \(G \) with a skip \(R \). Then \(G \) contains a perfect weave.

Proof. By the symmetries mentioned above, we may assume that the skip is between \(s_1 \) and \(s_2 \). But then the hex with feet \(v_i \) and paths \(Q_{ij} \) and the corresponding weave completes the proof. \(\square \)

Lemma 4.5.2. Let \(G \) be a brace with bipartition \((A, B)\) and \((K, M)\) a perfect Heawood-skein in which \(K \) is not the Heawood graph. Then \(G \) contains a perfect weave.

Proof. By symmetry and Lemma 4.2.6, we find a vertex \(u \in A \) on \(P_1 \) along with an \(M \)-alternating path \(R \) to a vertex leaning to one of the \(B \) vertices of \(K \) other than \(x_1 \). If \(R \) is a skip, we are done by Lemma 4.5.1 so we may assume the ends of \(R \) are \(u \) and \(w \) which leans to \(x_2 \). We now apply Lemma 4.2.7 with \(v = s_1, a = x_1, b = x_3, c = x_2, p = x_2, q = w \) and \(R \) serving as \(R \) to find one of the outcomes of that lemma.

Suppose we have outcome (i). Then there is a vertex \(p \in V(s_1 P_1 u) \), a path \(T \) with ends \(p \) and \(q \in V(K) \). If \(q \) leans to a vertex other than \(y_1 \) or \(v_1 \), \(R \) is a skip, so we are done. So we may assume \(q \) leans to \(y_1 \) or \(v_1 \); again by symmetry we may assume \(y_1 \). By Lemma 4.3.1, we may assume \(q = y_1 \) and \(w = x_2 \). Let \(X = T \cup R \) and \(Y = P_3 \cup v_3 Q_{36} x_3 \cup Q_{24} \cup v_2 Q_{25} x_2 \cup v_5 Q_{25} y_2 \cup v_4 Q_{14} y_1 \cup Q_{34} \cup Q_{35} \cup Q_{26} \cup Q_{15}. \) Then \(K + X - Y \) is a hex with feet \(x_1, c, y_1, u, s_1 \) and the corresponding weave is perfect.

Suppose we have outcome (ii). Then there is a vertex \(p \in V(s_1 P_1 u) \) and a path \(T \) with ends \(p \) and \(q \in uV(P_3) \), along with \(r \in V(q P_3 s_1) \) and a path \(S \) to \(t \in V(K). \)
Then t leans to y_3 or v_3 since otherwise S is a skip. Then we replace s_1 by u, taking $P'_1 = uP_1x, P'_2 = R, P'_3 = uP_1ptqP_3x_3$ and take $R' = x_2P_2s_1P_3x_3rSt$ in which case R' is a skip.

Suppose we have outcome (iii). Then there is a vertex $p \in V(s_1P_1u)$ and a path T with ends p and $q \in uP_1x_1$, along with $r \in V(uP_1p)$ with a path S to $t \in V(K)$. Then either S is a skip or we reroute P_1 to be $s_1P_1ptqP_1x_1$ and take $R' = x_2RuP_1rSt$ in which case R' is a skip.

This allows us to prove the main result for the Heawood graph:

Theorem 4.5.3. Let G be a brace with bipartition (A, B) not isomorphic to the Heawood graph and (K, M) a perfect Heawood-skein. Then G contains a perfect weave.

Proof. By Lemma 4.5.2, we may assume K is isomorphic to the Heawood graph. Let a, b be two vertices matched under M with $a \in A, b \in B$. Then it is easy to see using the brace property as in the proof of Lemma 4.2.1 that there are at least four distinct vertices of K, two in A and two in B, reachable by M-alternating paths from either a or b. Since the Heawood graph has girth 6, there must be two of these that are non-adjacent in K, say $u \in A$ and $w \in B$. Let S_1 be the M-alternating path between a and w and S_2 the M-alternating path between b and u. Let a' be the vertex of S_2 closest to w along S_1 or a if no such vertex exists. Let b' be the vertex matched to a' and e the edge between a' and b'. Note that $b' \in V(S_2)$. Then $wS_1a'eb'S_2u$ is a skip, so G contains a perfect weave. \[\square\]

We now move onto Rotunda. As in the case of the Heawood graph, it will be convenient to have a canonical labeling for a Rotunda-skein. We view Rotunda as a four-separation along with three vertex disjoint 4-cycles. We will refer to the 4-cycles as cores and to the vertices of the four-separation as pivots. We label the branch vertices corresponding to the vertices of the 4-cycles in order as $a_i, b_i, c_i, 1 \leq i \leq 4$ with a_1 and $a_3 \in A$ and a_2 and $a_4 \in B$ and similarly for the others. The pivots are
x_1, x_2, x_3, x_4 where there is a segment between x_i and a_i, b_i, and c_i for $1 \leq i \leq 4$. The segment from x_i to v_i, $1 \leq i \leq 4$, $v \in a, b, c$ is Q_{vi} and the segment between v_i and v_{i+1} is P_{vi} where the addition is taken modulo 4.

Lemma 4.5.4. Let G be a brace with bipartition (A, B) and (K, M) a perfect Rotunda-skein in G with a skip R with at least one end not a pivot. Then G contains a perfect weave.

Proof. By symmetry, we may assume one end of R is a_1 and the other is b_2 or x_3. Then let X be, respectively, $Q_{a_1} \cup Q_{a_2} \cup Q_{a_3} \cup P_{a_1} \cup P_{a_2} \cup P_{a_3} \cup P_{b_1} \cup P_{b_2}$, $Q_{a_1} \cup Q_{b_1} \cup Q_{c_1} \cup Q_{b_3} \cup Q_{c_4} \cup P_{b_1} \cup P_{b_4} \cup P_{c_2}$ with feet $\{x_1, c_1, c_2, b_4, c_4\}, \{a_1, a_3, x_2, a_2, a_4, x_3\}$ respectively. Then $K + R - X$ is a hex which gives rise to a perfect weave.

☐

To continue, we will need the following extension of Lemma 4.2.7.

Lemma 4.5.5. Let G be a brace with bipartition (A, B), let H be a graph with no vertices of degree two, let (K, M) be a maximal H-skein in G, let $v \in A$ be a branch-vertex of K of degree three, let P_1, P_2, P_3 be the three segments of K incident with v, and let v_1, v_2, v_3, respectively, be their other ends. Let Q_1, Q_2 be distinct members of P_1, P_2, P_3 and let $q \in A \cap V(Q_1)$, let $p \in B \cap V(Q_2)$, and let R be an M-alternating K-path in G with ends p and q. Then there exists a maximal H-skein (K', M'), where K' is obtained from K by replacing the paths P_1, P_2, P_3 by paths P'_1, P'_2, P'_3, respectively, and P'_i has ends v' and v_i. Furthermore, there exist distinct integers i, j in $\{1, 2, 3\}$, vertices $q' \in V(P_i) \cap A$ and $p' \in V(P'_j) \cap B$, an M-alternating K'-path R' with ends p' and q' and vertices $u_1 \in vP'_iq' \cap B$, $u_2 \in V(K') \cap A - V(P'_1 \cup P'_2 \cup P'_3)$ and an M'-alternating $(K' \cup R')$-path with ends u_1 and u_2.

Proof. Let $X = V(K) \cap B - V(P_1 \cup P_2 \cup P_3)$. Let P be the element of $\{P_1, P_2, P_3\}$ containing q. By Lemma 4.2.6, there exists an augmenting sequence R_1, \ldots, R_n
subject to P and M such that the ends of R_i are u_{2i-1} and u_{2i} and $u_{2n} \in V(K) \cap B - V(P_1 \cup P_2 \cup P_3)$. Choose v, P_1, P_2, P_3, M and such an augmenting sequence so that the augmenting sequence has as few augmentations as possible and, subject to that, such that as few of the ends of the augmentations lie on P_3 as possible. Note that only $u_1 \in V(vPq)$ since otherwise we immediately have a shorter augmenting sequence. Therefore, if the sequence has length 1, we are done, so we may assume it has length at least 2.

We may assume without loss of generality that $Q_1 = P_1, Q_2 = P_2$.

Suppose first that $u_2 \in V(R)$. Then take $v' = q, P'_1 = qP_1v_1, P'_2 = qRp_2v_2, P'_3 = qP_1vP_3v_3, p' = u_1, q' = u_2, u'_1 = u_3, R' = R_1$ to find a shorter augmenting sequence under a permutation of $\{v_1, v_2, v_3\}$. Suppose $u_2 \in V(P_2 \cup P_3)$. Then take $p' = u_1, q' = u_2, R' = R_1$ to find a shorter sequence. Finally, take $u_2 \in V(qP_1v_1)$. Then take $v' = p, P'_1 = pP_1v_1, P'_2 = pRqP_2v_2, P'_3 = pP_1vP_3v_3, p' = u_1, q' = u_2, R' = R_1, u'_1 = u_3$ to find a shorter augmenting sequence as desired. □

Definition. Let (K, M) be a Rotunda-skein and let P be a path between two components of $K \backslash \{x_1, x_2, x_3, x_4\}$ vertex disjoint from K except at its ends. Then we refer to P as a link.

We now show that perfect rotunda-skeins with M-augmenting links contain perfect weaves.

Lemma 4.5.6. Let G be a brace with bipartition (A, B) and (K, M) a perfect Rotunda-skein in G with an M-alternating link R. Then G contains a perfect weave.

Proof. We may assume that R is either not a skip or the ends of R lean to two pivots since otherwise we are done by Lemma 4.5.4. If both ends of the link lean to core vertices, we immediately find a skip. So we may assume at least one of the ends of the link, u on Q_{a1} leans to a pivot. Then either the other end, w, leans to a core vertex or to a pivot. We first consider the case in which u leans to x_1 and w to a core
vertex, either b_1 or c_1, say b_1. We may then apply either Lemma 4.2.7 or Lemma 4.5.5 depending on whether w is on a core path or on P_{b1}. We note that if we apply Lemma 4.3.1 after applying one of these Lemmas and assume $w = b_1$, then the outcome of Lemma 4.5.5 is the same as outcome (1) of Lemma 4.2.7 which we will show contains a perfect weave. So we may apply Lemma 4.2.7 with $v = x_1, q = u, p = w, a = a_1, b = c_1, c = b_1, P_1 = Q_{a1}, P_2 = Q_{c1}, P_3 = Q_{b1}$ and $R = R$ to find one of the outcomes of that lemma. In any of the outcomes, we find a vertex $v_1 \in V(x_1Q_{a1}u \cap A)$ and an M-augmenting path R_1 with ends v_1 and v_2, where v_2 is defined by the outcome.

Suppose we have outcome (1). Then v_2 leans to either a_2 or a_4 since otherwise we immediately have an appropriate skip. These two cases are symmetric, so we assume v_2 leans to a_2. By Lemma 4.3.1 we may assume $v_2 = a_2$ and $w = b_1$. Then let $S = R_1 \cup R$ and let X be $Q_{b1} \cup Q_{a2} \cup Q_{b2} \cup Q_{c2} \cup Q_{c3} \cup P_{a3} \cup P_{b1} \cup P_{b2} \cup P_{c4}$ in which case $K + S - X$ is a hex with feet $u, a_2, x_1, v_1, a_1, b_1$ which gives rise to a perfect weave.

Suppose we have outcome (2). Then v_2 lies on $uQ_{a1}a_1$, and we have $v_3 \in V(uQ_{a1}v_3$ and a path R_2 with ends v_3 and v_4. Since R_2 is not a skip, we may assume that v_4 leans to a_2 or a_4. But then rerouting Q_{a1} as $x_1Q_{a1}v_1R_1v_2Q_{a1}$ gives a skip $b_1RuQ_{a1}v_3R_2$.

Suppose we have outcome (3). Then we may assume v_2 lies on Q_{c1}. Then $v_3 \in V(x_1Q_{c1}v_2)$ and, by symmetry, v_4 leans to c_4. But then this is exactly the case of the length one augmenting path by viewing v_2 as u, v_1 as w, v_3 as v_1 and v_4 as v_2.

So we may assume that R is a skip between two pivots. Then we may assume that w is on Q_{b1}. We then apply Lemma 4.2.7 with $v = x_1, p = w, q = u, a = a_1, b = c_1, c = b_1, P_1 = Q_{a1}, P_2 = Q_{c1}, P_3 = Q_{b1}$ and $R = R$ to find one of the outcomes of that lemma. In any of the outcomes, we find a vertex $v_1 \in V(x_1Q_{a1}u \cap A)$ and an M-augmenting path R_1 with ends v_1 and v_2, where v_2 is defined by the outcome.

Suppose we have outcome (2). Then $v_2 \in V(uQ_{a1}a_1)$. Then $v_3 \in V(uQ_{a1}v_2)$ and v_4 leans to a_2 or a_4. Suppose first that $v_2 \in V(uQ_{a1}a_1)$. Then $v_3 \in V(uQ_{a1}v_2)$ and
v_4 leans to a_2 or a_4. If it leans to a_2, then rerouting Q_{a_1} as $a_1Q_{a_1}v_2R_1v_1Q_{a_1}x_1$ gives a skip $v_4R_2v_3Q_{a_1}uR_4$. So we may assume v_4 leans to a_4. But then rerouting Q_{a_1} as $a_1Q_{a_1}v_2R_1v_1Q_{a_1}x_1$ gives an M-alternating link $v_4R_2v_3Q_{a_1}uR_4$ not between two pivots which we showed above gives the desired result.

Suppose we have outcome (3). Then we may assume $v_2 \in V(Q_{b_1} \cap B)$ in which case R_1 is a skip not between two pivots.

Suppose we have outcome (1). Then v_2 must lean to a_4 or a_2 or else R_1 is a skip not between two pivots. Suppose v_2 leans to a_4. Then by Lemma 4.3.1 we may assume $v_2 = a_4$ and $w = x_4$. Let $S = R \cup R_1$ and let X be $Q_{b_4} \cup Q_{c_2} \cup Q_{a_3} \cup Q_{b_3} \cup Q_{c_3} \cup P_{a_2} \cup P_{a_3} \cup P_{b_1} \cup P_{c_4}$ in which case $K + S - X$ is a hex with feet $u, a_4, x_1, v_1, a_1, x_4$ and the corresponding weave is perfect.

So we have that v_2 leans to a_2. Note that by applying the same argument to the $wQ_{b_4}x_4$ piece, we can find a path R_2 with ends r and s with $r \in wQ_{b_4}x_4$, s leaning to b_3. Then by Lemma 4.3.1 we may assume $s = b_3$ and $v_2 = a_2$ and let X be $Q_{b_1} \cup wQ_{b_4}r \cup Q_{c_4} \cup Q_{a_2} \cup Q_{b_2} \cup Q_{c_2} \cup Q_{b_3} \cup P_{b_4} \cup P_{c_1} \cup P_{c_2}$. Let $S = R \cup R_1 \cup R_2$. Then $K + S - X$ is a hex with feet $a_1, a_3, v_1, a_2, a_4, u$ and the corresponding weave is perfect.

\square

We are now prepared to answer the question of when graphs with perfect Rotunda-skeins have perfect weaves.

Theorem 4.5.7. Let G be a brace with bipartition (A, B) and (K, M) a perfect Rotunda-skein in G with a link R. Then G contains a perfect weave.

Proof. If R is M-alternating, then we are done. We refer to a vertex of R as matched if its neighbor under M is a a neighbor in R and unmatched otherwise. Choose R to have as few unmatched vertices as possible and, subject to that, has as many ends that lean to core vertices as possible.
Then we may assume one end of \(R \) is \(u \in V(x_1 Q_{a_1} a_1) \) by symmetry and that it leans to a core vertex if either end of \(R \) leans to a core vertex. Let the other end of \(R \) be \(r \). Let \(p \) be the closest unmatched vertex in \(R \) to \(u \) and \(q \) its neighbor under \(M \). By the brace property, we can find two \(M \)-alternating paths, \(S_1, S_2 \) from \(q \) to \(K \cup R \) avoiding \(p \), not necessarily vertex-disjoint, with ends \(s_1, s_2 \) respectively. If either lies in \(R \), say \(S_1 \) we can replace the subpath of \(r \) between \(p \) and \(s_1 \) by \(p q s_1 \) to find a link with fewer unmatched vertices. If either lies on a path not incident with the core containing \(a_1 \), say \(S_1 \), then \(u R p q S_1 \) is an \(M \)-alternating link. If either \(s_1 \) or \(s_2 \) leans to a core vertex, say \(s_1 \), then if \(u \in A \) \(u R p q S_1 \) is a skip with an end that is not a pivot and otherwise \(s_1 S_1 q p R r \) is a link with the same number of unmatched vertices, but with an end that leans to a core vertex. So we may assume \(s_1 \) and \(s_2 \) both lean to pivots. If \(s_1 \) or \(s_2 \) is not a pivot, say \(s_1 \), then either \(u R p q S_1 \) is an \(M \)-alternating link or \(r R p q S_1 \) is a link with fewer unmatched vertices. So \(s_1 \) and \(s_2 \) are the two pivots of opposite parity from \(u \). Then if \(u \in A \), \(u R p q S_1 \) is a skip with an end that is not a pivot, so we may assume \(u \in B \). So we have \(s_1 = x_4 \) and \(s_2 = x_2 \).

We then apply Lemma 4.2.7 with \(v = x_1, a = a_1, b = b_1, c = c_1, p = p, q = u, P_1 = Q_{a_1}, P_2 = Q_{a_2}, P_3 = Q_{a_3} \) and \(u R p \) as \(R \). We find one of the three outcomes of that lemma. Then we have a vertex \(v_1 \in V(x_1 Q_{a_1} u) \cap A \), a vertex \(v_2 \) determined by the outcome in question, and an \(M \)-alternating path \(R_1 \) between them. Note that the symmetry between \(Q_{a_1} \) and \(Q_{a_2} \) allows us to choose \(v_1 \in V(Q_{a_1}) \).

Suppose we have outcome (1). Then \(v_2 \in V((S_1 \cup S_2 \cup R \cup K) \setminus (Q_{a_1} \cup Q_{a_2} \cup Q_{a_3} \cup u R p)) \cap B \). If \(v_2 \) lies on one of \(R, S_1, S_2 \), we have a link with the same or fewer unmatched vertices with one end leaning to a core vertex, respectively \(v_1 R_1 v_2 R r, v_1 R_1 v_2 S_1 s_1, v_1 R_1 v_2 S_2 s_2 \). So \(v_2 \) leans to \(a_2 \) or \(a_4 \) and, by symmetry, we may assume it leans to \(a_4 \). Then by Lemma 4.3.1 we may assume \(v_2 = a_4 \) and let \(X \) be \(Q_{a_2} \cup Q_{b_2} \cup Q_{c_2} \cup Q_{c_3} \cup P_{a_3} \cup P_{b_1} \cup P_{b_2} \cup P_{c_4} \). Then \(K + S_1 - X \) is a hex with feet \(u, a_4, x_1, v_1, a_1, x_4 \) and gives rise to a perfect weave.
Suppose we have outcome (2). Then R_1 is an M-alternating link.

Suppose we have outcome (3). Then $v_2 \in V(uQ_1a_1)$. Further, there exists $v_3 \in V(uQ_1v_2)$ and $v_4 \in V((S_1 \cup S_2 \cup R \cup K) \setminus (Q_1 \cup Q_2 \cup Q_3 \cup uR_p) \cap B$ with a path R_2 between them. Again, if v_4 lies on one of R, S_1, S_2, then we have a link with the same or fewer unmatched vertices with one end leaning to a core vertex, respectively $v_3R_2v_4Rr, v_3R_2v_4S_1s_1, v_3R_2v_4S_2s_2$. If v_4 does not lean to one of a_4 or a_2, then R_2 is either a skip or an M-alternating link. So we may assume v_4 leans to one of a_4 or a_2 and by symmetry may assume a_4. But then rerouting Q_1a_1 as $x_1Q_1v_1R_1v_2Q_1a_1$ gives a skip $a_4R_2v_3Q_1uS_2x_2$ which gives a perfect weave.

\[4.6 \text{ The Main Result}\]

We now have the tools to prove the main result of this chapter:

Theorem 4.6.1. A brace has a Pfaffian orientation if and only if it is isomorphic to the Heawood graph, or if it can be obtained from planar braces by repeated application of the trisum operation.

We require the following easy results found as (6.4) and (6.5) in [42]:

Theorem 4.6.2. Let G and H be bipartite graphs such that G contains H as a matching minor. If G has a Pfaffian orientation, then so does H.

Theorem 4.6.3. Let G_0 be a graph, C a cycle in G with a perfect matching in the complement, G_1 and G_2 subgraphs of G_0 such that $G_1 \cap G_2 = C, G_1 \cup G_2 = G_0, V(G_1) \cap V(G_2) \neq \emptyset$, and $V(G_2) - V(G_1) \neq \emptyset$. Let G be obtained from G_0 by deleting some (possibly none) of the edges of C. Then if G_1 and G_2 have Pfaffian orientations, then so does G.

Note that these immediately imply the following

Theorem 4.6.4. Let G be graph that contains a perfect Rotunda-skein. Let $\{x_1, x_2, x_3, x_4\}$ be the pivots of the Rotunda and suppose that $G \setminus \{x_1, x_2, x_3, x_4\}$ has at least
three components. Let G^+ be the graph formed from G by adding the edges $x_1x_2, x_2x_3, x_3x_4, x_4x_1$. Let A_1, A_2, A_3 be the three components of $G\{x_1, x_2, x_3, x_4\}$ containing the three cores of the Rotunda-skein. Let $A_i^+, i \in \{1, 2, 3\}$ be the subgraph of G^+ induced on $V(A_i) \cup \{x_1, x_2, x_3, x_4\}$. Then G has a Pfaffian orientation if and only if each A_i^+ has a Pfaffian orientation.

Proof. Suppose first that each $A_i^+, i \in \{1, 2, 3\}$ has a Pfaffian orientation. Then we apply Theorem 4.6.3 with $G_1 = A_1^+, G_2 = A_2^+, C = x_1x_2x_3x_4$ to see that $A_1^+ \cup A_2^+$ has a Pfaffian orientation. Applying Theorem 4.6.3 once more with $G_1 = A_1^+ \cup A_2^+, G_2 = A_3^+, C = x_1x_2x_3x_4$ and then deleting the edges of C not in G shows that G has a Pfaffian orientation.

In the other direction, we note that each of the graphs A_i^+ is a matching minor of G, so the result follows immediately from Theorem 4.6.2. □

We are now prepared to prove Theorem 4.1.1

Proof. If G is the Heawood graph, then it contains a Pfaffian orientation (one is given in, for example, (6.3) [42]). If G is formed from repeated application of the trisum operation on graphs with Pfaffian orientations, then repeated application of Theorem 4.6.3 gives that G has a Pfaffian orientation as well. Since planar graphs have Pfaffian orientations, this direction is complete.

For the other direction, suppose G has a Pfaffian orientation. Let G be the counterexample with the fewest vertices. If G is planar, we are done. Otherwise, by Theorem 4.1.2, G contains either a perfect skein with pattern one of $K_{3,3}$, Rotunda, or the Heawood graph. By Little’s Theorem, since G has a Pfaffian orientation, it does not contain a perfect $K_{3,3}$ skein. If G contains a perfect Heawood-skein and no perfect $K_{3,3}$-skein, then by Theorem 4.5.3, G is isomorphic to the Heawood graph. So we may assume that G contains a perfect Rotunda-skein. Let $\{x_1, x_2, x_3, x_4\}$ be the pivots of that Rotunda-skein. Then by Theorem 4.5.7, $G\{x_1, x_2, x_3, x_4\}$ has at
least 3 components.

Let \(G^+ \) be the graph formed from \(G \) by adding the edges \(x_1x_2, x_2x_3, x_3x_4, x_4x_1 \).

Let \(A_1, A_2, A_3 \) be the three components of \(G \{ x_1, x_2, x_3, x_4 \} \) containing the three cores of the Rotunda-skein. Let \(A_i^+, i \in \{1, 2, 3\} \) be the subgraph of \(G^+ \) induced on \(V(A_i) \cup \{x_1, x_2, x_3, x_4\} \).

Then \(G \) is a trisum of \(A_1^+, A_2^+, A_3^+ \) and, by Theorem 4.6.4, since \(G \) has a Pfaffian orientation, so do each of \(A_1^+, A_2^+, A_3^+ \). We need to show that each is a brace. Note that \(G^+ \) is a brace. Fix \(i \in \{1, 2, 3\} \). Then pick two edges in \(A_i^+, e \) and \(f \). Then \(G^+ \) has a perfect matching containing \(e \) and \(f \). Note that \(A_i^+ \) has the same number of vertices of each parity. If none of \(\{x_1, x_2, x_3, x_4\} \) are matched to vertices outside of \(A_i^+ \), then we are done. If all four are, then we restrict the matching to \(A_i^+ \) and add the edges \(x_1x_2, x_3x_4 \). Otherwise exactly two of opposite parity are matched to vertices outside of \(A_i^+ \), say \(x_1, x_2 \), so restrict the matching to \(A_i^+ \) and add the edge \(x_1x_2 \).

Since each of \(A_i^+, i \in \{1, 2, 3\} \) is a brace and has fewer vertices than \(G \) and has a Pfaffian orientation, each is either isomorphic to the Heawood graph, or formed from planar braces by repeated application of the trisum operation by the minimality of \(G \). Since the Heawood graph does not have any four-cycles, each of these graphs cannot be isomorphic to the Heawood graph, which completes the proof. ☐

4.7 An Algorithmic Consequence

The primary advantage to Theorem 4.1.2 in [42] over the previous results was that it provided a polynomial-time algorithm to determine whether or not a bipartite graph has a Pfaffian orientation. We note in this section that our results also provide such an algorithm.

We note first that the proofs in this section are fundamentally algorithmic; we make use of that fact to present the following sequence of theorems.

Theorem 4.7.1. There exists a polynomial-time algorithm with input a non-planar
brace, G, and output an odd hex contained in G.

Proof. This follows immediately from the proof of Theorem 3.1.3, noting that braces are internally 4-connected. □

Theorem 4.7.2. There exists a polynomial-time algorithm with input a non-planar brace G and an odd hex contained in G, K, and output a perfect H-skein in G where H is one of Rotunda, the Heawood graph or $K_{3,3}$.

Proof. The proof of Theorem 4.4.4 is fundamentally algorithmic. Given an odd hex, we find a maximal matching in the complement which gives us a skein. As long as the matching in the skein is not perfect, if the pattern is Rotunda or Heawood, we find a snarl of width two and find a weave as in the proofs of Theorems 4.4.2 and 4.4.3. Otherwise, we find a snarl of width three and use that snarl to find a skein of larger heft as in the proof of Theorem 4.4.4. Since the heft of the skein increases in each iteration, there are at most a linear number of iterations, so this algorithm is polynomial-time. □

Theorem 4.7.3. There exists a polynomial-time algorithm with input a brace G and output whether or not G has a Pfaffian orientation.

Proof. We test G for planarity. If G is planar, then it has a Pfaffian orientation. Otherwise, we apply the algorithm of Theorem 4.7.1 to find an odd hex in G. We then apply the algorithm of Theorem 4.7.2. If we find a perfect weave, then G does not have a Pfaffian orientation. If the pattern of the skein is the Heawood graph, then either G is isomorphic to the Heawood graph in which case it has a Pfaffian orientation or, by Theorem 4.5.3, it contains a perfect weave in which case it does not have a Pfaffian orientation. Finally, if the pattern of the skein is Rotunda, we delete the four pivots of the Rotunda-skein and check whether G remains connected. If it does, then by Theorem 4.5.7, G contains a perfect weave. Otherwise, we recur
on each of the resulting components. If any of the components do not have a Pfaffian orientation, then G does not, and if all three do have Pfaffian orientations, then so does G by Theorem 4.6.4. □

We would now like to extend these results to bipartite graphs rather than only to braces. The following theorem follows immediately from (9.1) and (9.6) from [42], neither of which is difficult:

Theorem 4.7.4. There exists a polynomial-time algorithm with input a bipartite graph G and output a list of braces, C_0, \ldots, C_k such that G has a Pfaffian orientation if and only if each of C_0, \ldots, C_k does.

Combined with Theorem 4.7.3 this immediately gives the following:

Theorem 4.7.5. There exists a polynomial-time algorithm with input a bipartite graph G and output whether or not G has a Pfaffian orientation.
5.1 Introduction

We are interested in this chapter in embeddings of graphs in 3-space. For their convenience, we remind the reader of several terms described in detail in Chapter 1. Every graph admits an embedding in \(S^3 \), called the book-embedding, so we require some additional restrictions to have a meaningful concept. One natural condition is to insist that every two disjoint cycles form a trivial link. This leads to the following definition: We say that an embedding of a graph \(G \) in linkless if for every two disjoint cycles of \(G \) their linking number is 0. Similarly, an embedded graph is flat if every cycle \(C \) of the graph bounds a disk \(\Delta \) disjoint from the rest of the graph. Such a disk is called a panel for \(C \). We restate the following theorem of [41] from Chapter 1 that characterizes linkless and flat graphs:

Theorem 5.1.1. For a graph \(G \) the following conditions are equivalent.

1. \(G \) has a flat embedding
2. \(G \) has a linkless embedding
3. \(G \) has no minor isomorphic to a member of the Petersen family

In most of this section, we are generally more interested in \(Y - \Delta \) minors than in true minors. As discussed in the Introduction, let \(G \) be a graph and \(v \in V(G) \) of degree 3 with neighbors \(a, b, c \). Then a \(Y - \Delta \) transformation is the removal of \(v \) and the addition of edges \(ab, ac, bc \) to \(G \). Similarly, let \(abc \) be a triangle in \(G \). Then a \(\Delta - Y \) transformation is the removal of the edges \(ab, ac, bc \) and the addition of a vertex \(v \) adjacent to each of \(a, b, c \). Further, if \(H \) is a graph, we say that \(G \) contains
as a $Y - \Delta$ minor if there is a sequence of contractions, $Y - \Delta$ operations, and
$\Delta - Y$ operations that take a subgraph of G to a graph isomorphic to H. Since $Y - \Delta$
operations do not change whether or not a graph is flat, the above theorem implies
that a graph contains a graph in the Petersen family as a proper minor if and only if
it contains it as a $Y - \Delta$ minor.

While an algorithm of van der Holst [50] can find a linkless embedding for a graph
in polynomial time, there is no similar algorithm for flat embeddings. To that end,
we are interested in the question of how to build up flat embeddings of graphs from
flat embeddings of smaller graphs. One possibility is to glue two graphs together on
small cutsets. In fact, the proofs of (5.3) and (5.4) of [41] give that

Theorem 5.1.2. Let G be a graph with separation $(A, B), K = A \cap B, |K| \leq 4$.
Further if $|K| = 4$, $G \backslash K$ has exactly two components. Let K^* be the complete graph
with vertex set K and Γ_A and Γ_B be flat embeddings for $G[A] \cup K^*$ and $G[B] \cup K^*$.
Then there is a natural flat embedding for G formed from Γ_A and Γ_B.

We refer to separations of this sort as complete separations. Specifically, let (A, B) be a separation in a graph G with $K = A \cap B, K^*$ complete on K. Then the
separation is complete if $|K| \leq 4$, $G \backslash K$ has exactly two components if $|K| = 4$, and
G contains $A \cup K^*$ and $B \cup K^*$ as $Y - \Delta$ minors. We note also that in order to create
the embedding for G above, we require the panels for the embeddings of A and B on
K^*.

A different possibility is to find an edge e such that $G \backslash e$ has a flat embedding
along with a natural way to add e back in. One way that we can do this is to find a
peripheral theta:

Definition. Let C be a cycle with vertices $v_1, ..., v_n$ in order and let $e = v_i v_j$ be
an edge not in C. Then we refer to the graph with vertex set $V(C)$ and edge set
$E(C) \cup \{e\}$ as an theta graph with arc e and loop C. A subgraph H in a graph G
isomorphic to a theta graph is peripheral if H is induced in G and $G - H$ is connected.
As will be shown later, if we have a flat embedding of a graph H found by deleting the arc of a peripheral theta with loop C from G, we can find a flat embedding for G by embedding e along a panel for C.

One nice aspect of flat embeddings is that, assuming the graph is reasonably well-connected, its embedding is unique. Specifically, we say that a Kuratowski subgraph is a subdivision of K_5 or $K_{3,3}$. A graph is Kuratowski-connected if it is 3-connected and, for every separation (A, B) with $|A \cap B| \leq 3$ there is a planar embedding of either $G[A]$ or $G[B]$ with $A \cap B$ embedded on the outer face. The following theorem of [41] provides that.

Theorem 5.1.3. Let G be a Kuratowski-connected graph that admits a flat embedding. Then all flat embeddings of G are homeomorphic.

The main results of this paper are to show that, given a graph G, G is either of bounded size, contains one of a Petersen family minor, a peripheral theta, or a complete separation, or is apex. By the above theorems, then, this gives us a strategy for an algorithm. If G is small, planar, or apex, embed it. If G contains a minor in the Petersen family, there is no possible flat embedding. If G contains a complete separation, recursively embed each of the sides of the separation and then glue them together using Theorem 5.1.2. Otherwise, we find a peripheral theta. Delete the arc of the theta, embed the resulting graph recursively, and then embed the arc across the panel for the loop of the theta.

There are two main difficulties with this algorithm. The first is that in addition to the embedding for the graph, we also require panels on select cycles in order to continue building up our embedding. It seems difficult to find such panels dynamically and unclear how to maintain such panels throughout the process. The second is in bounding the complexity of the embedding by a polynomial. If we measure the complexity of an embedding as the smallest number of crossings in regular projection, a naive implementation could easily cause the complexity to double (or more) each
time we embed the arc of some peripheral theta. In fact, it is not clear that, in
general, flat graphs have a flat embedding that is of polynomial complexity in their
number of vertices and edges. These difficulties seem a fruitful subject for further
research and we hope that the theorems provided in this chapter are helpful in the
eventual construction of such a polynomial time algorithm.

5.2 The Main Theorem

The following is the main theorem for this chapter:

Theorem 5.2.1. There exists an absolute constant N such that if G is a graph on
at least N vertices at least one of the following holds:

1. G contains a graph in the Petersen family as a minor

2. G contains a complete separation

3. G contains a peripheral theta, the deletion of whose arc leaves G Kuratowski-
 connected

4. There exists $X \subseteq V(G)$, $|X| \leq 1$ such that $G \setminus X$ is planar

As an applications to a flat embedding algorithm, the first and fourth outcomes
here are obviously helpful. The second outcome is helpful as a result of Theorem
5.1.2. We discuss the third outcome in a little more detail. Specifically we would like
to show that

Theorem 5.2.2. Let G be a flatly embeddable graph. Assume that G has a peripheral
theta graph with cycle C and arc e, and assume also that $G \setminus e$ is Kuratowski connected.
Let ϕ be a flat embedding of $G \setminus e$, let Δ be a panel for C in the embedding ϕ, and let
ψ be an embedding of G such that $\psi(e) \subseteq \Delta$ and $\psi(x) = \phi(x)$ for every vertex and
edge x of $G \setminus e$. Then ψ is a flat embedding of G.

We provide a proof here, but first require a similar lemma of [41]:

117
Lemma 5.2.3. Let $X \subseteq \mathbb{R}^3$ be closed, let $F \subseteq X$ be a circle such that $X - F$ is arc-wise connected and let $y_1, y_2, y_3 \in F$ be distinct such that $(X - F) \cup \{y_i\}$ is arc-wise connected for $i = 1, 2, 3$. Let Δ_1, Δ_2 be X-panels for F. Then there is an orientation-preserving homeomorphism of \mathbb{R}^3 fixing X and a neighborhood of $X - F$ point wise and mapping Δ_1 to Δ_2.

We will also make use of B"ohme’s Lemma [6]:

Lemma 5.2.4. Let $C_1, \ldots C_n$ be cycles with pairwise connected intersection in an embedded graph G. If there is a panel for each of C_1, \ldots, C_n, then there exist simultaneous panels $\Delta_1, \ldots, \Delta_n$ for C_1, \ldots, C_n respectively so that $\Delta_i \cap \Delta_j = C_i \cap C_j$ for $1 \leq i < j \leq k$.

We now prove Theorem 5.2.2

Proof. Since G is a flatly embeddable graph, there exists a flat embedding of G, Γ. Look at the restriction of Γ to $\Gamma \setminus e$, Γ'. Then there is a homeomorphism between Γ' and ϕ by Theorem 5.1.3 since $G \setminus e$ is Kuratowski connected. We can choose this homeomorphism to be the identity by appropriately modifying Γ. Let Δ be a panel for C in ϕ. Let C_1 and C_2 be the two cycles in the theta graph using e. By B"ohme’s Lemma, we can find simultaneous panels for C_1 and C_2 in Γ whose union gives a panel for C containing e, Δ'. Note that since G is 3-connected and $G \setminus C$ is connected, there exist three vertices on C, v_1, v_2, v_3, such that $G \setminus C \cup \{v_i\}$ is connected for $1 \leq i \leq 3$. By Lemma 5.2.3, there is a homeomorphism transforming Δ into Δ' which fixes the remainder of the embedding. But this has then provided a homeomorphism between ψ and Γ, so ψ is a flat embedding. \square

As a final remark, we note that Theorem 5.2.1 only applies to sufficiently large graphs. But embedding graphs of bounded size can be done by the following algorithm:
Theorem 5.2.5. Let G be a graph that admits a flat embedding. Then there is a finite time algorithm to find a flat embedding.

Proof. For each integer $i \geq 0$, let H be formed from G by, i times, choosing a pair of edges of G, $e = uv$ and $f = xy$, removing them, and adding a new labeled vertex z and edges uz, vz, xz, yz. A planar embedding of H along with a choice of “up” or “down” for each labeled vertex gives a regular projection for an embedding of G. For each of these regular projections, check whether the corresponding embedding is flat by using the algorithm of [45]. If so, stop and return that embedding.

It is clear that, if the algorithm terminates, it returns a flat embedding for G. G by assumption admits a flat embedding. Therefore there exists a regular projection for that embedding with a finite number of crossing edges, n. Then this algorithm will encounter that regular projection when $i = n$, so will terminate. \square

5.3 Structural Theorems

In this chapter we make use of several more sophisticated results from structural graph theory than are required in the previous chapter. For the convenience of the reader, we use this section to summarize and provide some context for these results.

We begin with the two-path theorem, a version of Theorems (2.3) and (2.4) in [36]:

Theorem 5.3.1. Let G be a graph with $x_1, x_2, y_1, y_2 \in V(G)$. Further, suppose there is no separation (A, B) with $|A \cap B| \leq 3$, $\{x_1, x_2, y_1, y_2\} \subseteq A$ and $B - A \neq \emptyset$. Then either there exist two paths P_1, P_2 with ends x_1, x_2 and y_1, y_2 respectively or there exists a planar embedding of G with x_1, y_1, x_2, y_2 in that order along the boundary.

The other major idea from graph minors theory that we make use of is tree-width and tree decompositions. Tree decompositions have a long history, first discovered in [18] and later rediscovered in [35] and [5]. A tree decomposition of a graph G is a
pair \((T, Y)\) in which \(T\) is a tree and \(Y\) is a family of vertex sets indexed by vertices of the tree such that:

1. \(\bigcup_{t \in V(T)} Y_t = V(G)\), and every edge of \(G\) has both ends in some \(Y_t\)
2. If \(t, t', t'' \in V(T)\) and \(t'\) lies on the path between \(t\) and \(t''\) in \(T\), then \(Y_t \cap Y_{t''} \subseteq Y_{t'}\)

The width of a tree-decomposition is \(\max_{t \in V(T)} |Y_t - 1|\) and the tree-width of a graph is the minimum width of a tree-decomposition for it. The idea of tree-width has been studied extensively; we make use of several relevant theorems later and will state them as needed.

The final structural result we need comes from [39]. Suppose \(H\) is a minor of \(G\). Then there is a partition of a subset of the vertex set of \(G\) into connected subgraphs \(A_1, A_2, A_3, \ldots, A_k\) such that if \(v_1, v_2, \ldots, k\) are the vertices of \(H\) and there is an edge between \(v_i\) and \(v_j\) in \(H\), there is an edge between \(A_i\) and \(A_j\) in \(G\). We refer to the \(A_i\) as the bags of the minor.

Let \(\{a, b, c, d\}\) be four distinct vertices in a graph \(G\). Then we say that an \(\{a, b, c, d\}\)-minor is a \(K_4\) minor of \(G\) in which each of \(\{a, b, c, d\}\) are in separate bags of the minor. The following is an immediate consequence of (2.6) from [39]:

Theorem 5.3.2. Let \(G\) be a graph with \(a, b, c, d \in V(G)\) and \(|V(G)| \geq 6\). Further, suppose there is no separation \((A, B)\) with \(|A \cap B| \leq 3\), \(\{a, b, c, d\} \subseteq A\) and \(B - A \neq \emptyset\).

Then one of the following holds:

1. \(G\) has an \(\{a, b, c, d\}\) minor
2. There is a planar embedding of \(G\) with \(a, b, c, d\) on the outer face
3. There exist vertices \(x\) and \(y \in V(G) - \{a, b, c, d\}\) such that \(G \setminus \{x, y\}\) has three components, two of which are exactly single vertices of \(\{a, b, c, d\}\)
5.4 Connectivity

In this section we detail a theorem that allows us to handle sufficiently large graphs that are not well-connected. We say that a graph is internally 5-connected if it is 4-connected and, for every separation \((A, B)\), \(|A \cap B| = 4\), either \(|A| \leq 5\) or \(|B| \leq 5\).

Specifically, we show that

Theorem 5.4.1. Let \(G\) be a 4-connected graph. Let \(A, B\) be a 4-separation of \(G\) with \(|A \cap B| = X\), \(|V(B)| \geq 6\), \(|V(A)| \geq 5\). Then either \(G\) contains \(K_{4,4}\) minus an edge as a \(Y - \Delta\) minor, \(G\) contains a peripheral theta, or both \(A\) and \(B\) contain \(K_4\) minors rooted on \(X\) and are connected after deleting \(X\).

Several of the definitions required for this theorem will follow later in the section, but for the moment we note that this theorem is useful in reducing the problem of finding a flat embedding to smaller graphs. Without definition, if \(G\) contains \(K_{4,4}\) minus an edge as a \(Y - \Delta\) minor, then it is not flat. If \(G\) contains a peripheral theta, that is the same result we are finding from our main theorem in the case of internal 5-connectivity. Finally, if both \(A\) and \(B\) contain rooted \(K_4\) minors, again without definition, a theorem of [41] will allow us to glue together a flat embedding found on the two sides.

We begin by handling the case that \(G\) contains a large planar piece in a particular way.

Lemma 5.4.2. Let \(G\) be a 3-connected graph. Let \(H\) be an induced plane subgraph of \(G\) with outer cycle \(C\) and \(|E(H)| > |E(C)|\). Suppose that \(G - H\) is connected and that for any set \(X \subseteq V(H)\) with \(|X| \leq 3\), no component of \(V(H) - X\) is disjoint from \(C\). Then \(G\) contains a peripheral theta which is a subgraph of \(H\).

Proof. We proceed by induction on \(|V(H)| + |E(H)|\). Clearly if \(|V(H)| = 4\) and \(|E(H)| = 5\), then \(H\) is itself a peripheral theta in \(G\). Note that \(H\) is 2-connected, so the boundary of every face is a cycle.
Suppose H contains an edge e such that the bounding cycles of the two faces incident with e are completely disjoint from C. Let u and v be the ends of e and F_1 and F_2 the bounding cycles of the incident faces. Then we claim that $F = F_1 \cup F_2$ is a peripheral theta of G. Note first that F_1 and F_2 intersect in exactly e since if they met in another vertex w, then either u and w separate v from C or v and w separate u from C. So the vertices of $F_1 \cup F_2$ form a cycle, which we label $v = v_1, v_2, \ldots, u = v_n, v_{n+1}, \ldots, v_m$. Suppose F is not induced. Then $f = v_i v_j$ is an edge, $i < j$, but then the set $\{v_i, v_j, u\}$ or $\{v_i, v_j, v\}$ separates part of F from C. Similarly, let S be a component of $G - F$ disjoint from $G - H$. Then S is disjoint from C. Let i be the smallest number such that v_i is a neighbor of a vertex in S and j the largest. Then $\{v, v_i, v_j\}$ separates S from C which is a contradiction. So F is a peripheral theta.

Let $V(C) = \{v_1, v_2, v_3, \ldots, v_n\}$ in order. Suppose H contains an edge e with ends v_i, v_j, $n - 1 > j - i > 1$. If H is exactly $C \cup \{e\}$, then H is a peripheral theta in G. Otherwise, let H' be the plane subgraph of H bounded by $v_i, v_{i+1}, \ldots, v_j$ if it has at least one edge not in C and the plane subgraph of H bounded by $v_j, v_{j+1}, \ldots, v_i$ otherwise. Let C' be the outer cycle of H'. Note that since $C \cup \{e\}$ was not all of H, H' satisfies $|E(H')| > |E(C')|$. H' is clearly induced since H is and $G - H'$ is connected since $\{v_i, v_j\}$ does not separate G since G is 3-connected. So by induction G contains a peripheral theta which is a subgraph of H' and hence of H.

So we may assume that H contains a vertex not on C, v. By Menger’s Theorem, there are 4-vertex disjoint paths, each with one end v and the other end on C. Let P_1, \ldots, P_4 be these paths and let the ends of P_i be v and u_i where u_1, u_2, u_3, u_4 are in order around C. Further, choose these paths with total length as small as possible. Since G is 3-connected, $G - H$ has a neighbor in one of the paths $u_1 Cu_2 Cu_3$ and $u_1 Cu_4 Cu_3$ other than u_1 and u_3. Without loss of generality, we may assume $G - H$ has a neighbor in $u_1 Cu_2 Cu_3$ other than u_1 or u_3. Let H' be the plane subgraph of H.
bounded by $u_1P_1vP_3u_3Cu_4Cu_1$. Let C' be the outer cycle of H'. Then H' is induced since the P_i are as short as possible. Since $P_4 \subset H'$, $|E(H')| > |E(C')|$. Finally, $C - C'$ and $G - H$ are in the same component of $G - H'$ by our choice of H'. Suppose there is another component S in $G - H'$. Then S has 4 neighbors on exactly one of P_1 or P_3, so we may assume on P_1. Let these neighbors be x_1, x_2, x_3, x_4 in order on P_1 with x_1 the closest to u_1 along P_1. Then look at the two faces containing the edge from S to x_3. All of the vertices of their bounding faces must be disjoint from C, so we are done. So we may assume no such component exists, so we may apply induction to H' which completes the proof.

\[\Box\]

Definition. Let G and H be graphs with $|V(H)| = n$. An H-minor of G rooted at $\{v_1, v_2, ..., v_n\} \in V(G)$ is an H-minor of G in which each of the v_i are in separate bags of the minor.

Lemma 5.4.3. Let G be a 4-connected graph. Let H be a plane subgraph of G with vertices a, b, c, d embedded on the outside in order. Further, suppose that $H - \{a, b, c, d\}$ is a component of $G - \{a, b, c, d\}$ and that $|V(H)| \geq 6$. Then either G contains a peripheral theta whose arc is disjoint from $\{a, b, c, d\}$ or the subgraph of G induced by the vertices of H contains a K_4 minor rooted at $\{a, b, c, d\}$.

Proof. Let $X = \{a, b, c, d\}$. If ab, bc, cd, ad are edges in $G - H$ add them to H.

Suppose H contains an edge e with ends not in X and whose incident faces are bounded by cycles. Let u and v be the ends of e and F_1 and F_2 the bounding cycles of the incident faces. Then we are interested in when $F = F_1 \cup F_2$ is a peripheral theta of G. Note first that F_1 and F_2 intersect in exactly e since if they met in another vertex w, then either u and w separates v from X or v and w separates u from X. So the vertices of $F_1 \cup F_2$ form a cycle, which we label $v = v_1, v_2, ..., u = v_n, v_{n+1}, ..., v_m$. Let S be a component of $G - F$ disjoint from $G - H$. Then S is disjoint from X.

123
Let i be the smallest number such that v_i is a neighbor of a vertex in S and j the largest. Then $\{v, v_i, v_j\}$ separates S from X which is a contradiction. Suppose F is not induced. Then $f = v_i v_j$ is an edge, $i < j$, but then the set $\{v_i, v_j, u\}$ or $\{v_i, v_j, v\}$ separates part of F from C unless f is not contained in H, so is between two vertices of X. So F is a peripheral theta unless it contains two vertices of X, with an edge between them in $G - H$.

Let $v \in V(H) - \{a, b, c, d\}$. Then by Menger’s Theorem, v has vertex disjoint paths P_1, P_2, P_3, P_4 to a, b, c, d respectively. Choose these so that their total length is as short as possible. Suppose each of these paths has length 1. By assumption, H contains another vertex u which must, in the planar embedding, lie in one of the four quadrants given by the P_i. We may assume it lies in the quadrant formed by P_1 and P_2. But then $\{v, a, b\}$ is a separation in G which is a contradiction. So at least one of these paths is not a single edge. We assume that path is P_1 and u is the neighbor of v along P_1. Then by Menger’s Theorem, u has vertex disjoint paths Q_1 and Q_2 to, respectively, $x, y \in V(P_2 \cup P_4)$ that avoid a and v. If $x \in V(P_2), y \in V(P_4)$, then the faces incident with $e = uv$ are bounded by cycles. Similarly, if $x, y \in V(P_2)$ with $x \in V(vP_2y)$, then any edge along Q_1 has ends disjoint from $\{a, b, c, d\}$ and its neighboring faces are bounded by cycles. In this case, at most one vertex of $\{a, b, c, d\}, b$, is contained in the bounding cycles of these faces, so by the above we are done.

So we may assume that the faces incident with $e = uv$ are bounded by cycles F_1, F_2. By the above, $F = F_1 \cup F_2$ is a peripheral theta unless it contains two vertices of X with an edge between them in $G - H$. Since c cannot be in F, those two vertices of X must be b and d. But then contract uP_1a and vP_3c, $P_2 - \{v\}$, and $P_4 - \{v\}$ to find the desired K_4-minor.

□

Lemma 5.4.4. Let G be a 4-connected graph. Let A, B be a 4-separation of G with
\(|A \cap B| = X, |V(A)|, |V(B)| \geq 6.\) Suppose that \(A\) does not contain a \(K_4\) minor rooted at \(X\) or a \(K_{4,2}\) minor with all the vertices of \(X\) in different components of the 4-side of the minor. Then \(G[A]\) contains a peripheral theta whose arc is disjoint from \(\{a, b, c, d\}\).

Proof. Let \(a, b, c, d\) be the four vertices of the separation. We proceed by induction on the size of \(A\). Suppose first that \(|A| = 6\). Let \(x\) and \(y\) be the two other vertices of \(A\). If \(x\) and \(y\) are not adjacent, then \(A\) is \(K_{4,2}\) with \(a, b, c, d\) the vertices on the 4-side. So we may assume \(x\) and \(y\) are adjacent. Since \(x\) and \(y\) are each degree at least 4, each is adjacent to at least three of \(a, b, c, d\). So if any two of \(a, b, c, d\) do not neighbor both \(x\) and \(y\), we can embed \(A\) planarly with \(a, b, c, d\) on the outside in which case we find a peripheral theta by Lemma 5.4.3. So exactly one of \(a, b, c, d\) neighbors only one of \(x\) and \(y\), say \(a\) neighbors \(x\). But then consider the peripheral theta with loop \(C = xbyd\) and arc \(xy\). \(G\) remains connected after deleting \(V(C)\) since \(\{b, d\}\) does not disconnected \(G\). Further, \(C\) is induced (other than \(xy\)) unless \(bd\) is an edge. But then contracting \(a\) with \(x\) and \(c\) with \(y\) gives a rooted \(K_4\) minor in \(A\).

Suppose \(|A| = 7\). Let \(x, y, z\) be the vertices of \(A\) other than \(a, b, c, d\). Then we note that we may assume \(xy\) and \(yz\) are edges since otherwise we are in the previous case in which \(|A| = 6\). Further, each of \(a, b, c, d\) has at least 2 neighbors in \(x, y, z\) since otherwise we can apply induction and immediately find one of the desired outcomes. Suppose one of \(a, b, c, d\), say \(a\) is adjacent to \(x, y, \) and \(z\). We know that \(y\) has another neighbor in \(b, c, d\), say \(b\). Then we may assume \(x\) is adjacent to \(c\) and \(z\) to \(d\). If \(x\) is also adjacent to \(d\), contract \(xc, yb, zd\) to find a rooted \(K_4\) minor. So we have \(y\) adjacent to \(c\) and \(d\). Since \(b\) has two neighbors in \(x, y, z\), we may assume \(x\) neighbors \(b\). Then \(z\) has degree at least 4, so neighbors either \(b\) or \(x\). In either case, contracting \(xb, yc, zd\) gives the desired \(K_4\) minor. So we may assume none of \(a, b, c, d\) is adjacent to all of \(x, y, z\). If \(xz\) is not an edge, then it is immediately clear that (up to symmetry), the edges are \(ax, az, bx, bz, cx, cy, dy, dz\), in which case \(C = bxcyz\) with arc \(xy\) is a
peripheral theta since deleting C leaves G connected and it is induced unless cb is an edge, in which case contracting ax, bz, dy gives the rooted K_4 minor. So we may assume xz is an edge. We may assume a neighbors x and y. But then $C = axyz$ with arc xy is a peripheral theta since a and z are non-adjacent. So $|A| > 7$.

Suppose now that $|A| \geq 8$. Then by Theorem 5.3.2, either G has a rooted K_4-minor, a planar embedding with a, b, c, d on the outside, or two vertices x, y such that $A \setminus \{x, y\}$ has two components, each of which a single vertex of a, b, c, d. We may assume the latter by Lemma 5.4.3. Suppose a neighboring x and b neighboring y are the single components after deleting x and y. But then x, y, c, d forms a four-separation that satisfies the induction hypothesis, so has either one of the desired minors or a peripheral theta. But a desired minor in x, y, c, d is also a desired minor in a, b, c, d after contracting ax and by which completes the proof. \square

The graph K_4^+ is the graph on 5 vertices, v_1, v_2, v_3, v_4, v_5 such that v_5 is adjacent to each of v_1, \ldots, v_4 and $v_1v_2v_3$ forms a triangle. When we say that G contains a rooted K_4^+ subgraph on vertices a, b, c, d, we mean that (up to permutation of a, b, c, d), G contains a subgraph isomorphic to K_4^+ in which $a = v_1, b = v_2, c = v_3, d = v_4$.

![Figure 5.1: The graph K_4^+](image)

Definition. Let G be a graph and $X = \{a, b, c, d\} \subseteq V(G)$. Then we say that G contains K_4^+ as a $Y - \Delta$ minor rooted at X if there are a sequence of contractions, $Y - \Delta$ operations, and $\Delta - Y$ operations that take a subgraph of G to a graph with
a vertex \(v \notin X \) such that \(v \) is adjacent to each member of \(X \) and there are three vertices in \(X \), say \(b, c, d \) such that \(bcd \) forms a triangle.

Lemma 5.4.5. Let \(G \) be a graph on at least 5 vertices and suppose that \(X \subseteq V(G) \), \(|X| = 4 \) such that \(G \) contains \(K_4 \) as a \(Y - \Delta \) minor rooted at \(X \). Further, suppose that there is no subset of \(X, X' \), such that \(G - X' \) is not connected. Then \(G \) contains \(K_4^+ \) rooted at \(X \) as a \(Y - \Delta \) minor.

Proof. We proceed by induction on \(|V(G)| + |E(G)| \). If \(|V(G)| = 5 \), we have \(K_4^+ \) as a rooted subgraph which suffices.

Let \(X = \{a, b, c, d\} \) and let the components of the rooted \(K_4 \) minor be \(A, B, C, D \) respectively. Note first that each component of \(A - a \) must be a single vertex, since otherwise we contract it down to a single vertex and apply induction, and similarly for \(B - b \) and so on. In addition, each vertex of \(G - X \) has a neighbor in \(G - X \), since \(|V(G - X)| \geq 2 \) and \(G - X \) is connected. Next, we may assume each vertex of \(G - X \) has degree at least 4. If a vertex \(v \) had degree 1, we can delete it, 2, we can contract an incident edge, and 3, remove it with a \(Y - \Delta \) transformation, each of which reduces the number of vertices by 1.

For every vertex \(v \) of \(A - a \), there is some member of \(\{B, C, D\} \), say \(B \), such that \(A - v \) has no neighbor in \(B \). Otherwise, contract the edge between \(v \) and one of its neighbors in \(G - X \). Then the connectivity requirements remain satisfied, as does the rooted minor requirement. In addition, for every vertex \(v \) of \(A - a \), if \(v \) has a neighbor in \(B - b \), then it is not adjacent to \(b \), since otherwise we could just delete the edge to \(b \).

If \(v \in A - a \) has a neighbor in each of \(B, C, D \), then contract \(B, C, D \) to single vertices to find a rooted \(K_4^+ \) as desired. So we may assume that \(v \) has 2 neighbors in \(B, x \) and \(y \). Since \(x \) and \(y \) form unique connections for \(B, x \) has a neighbor in \(C \) and \(y \) in \(D \). Note that \(v \) does not have another neighbor in \(B \), so we may assume \(v \) has a neighbor in \(C \). Further note that \(C \) and \(D \) are adjacent. Then use the \(Y - \Delta \)
operation to remove y and similarly for x. Then contracting $A - v$, B, C, D gives K^+_4 as a rooted minor. □

The following lemma will prove useful in the proof of Theorem 5.4.7:

Lemma 5.4.6. Let G be a graph and let $a, b, c, d, x, y \in V(G)$ be distinct. Suppose there does not exist a separation (A, B) with $\{a, b, c, d\} \subseteq A$, $B - A \neq \emptyset$, and $|A \cap B| \leq 3$ and that G does not have a K_4 minor rooted on $\{a, b, c, d\}$. Suppose $e = xy \in E(G)$ and $G \setminus \{b, c\} \setminus \{e\}$ has at least two components, U containing x and a and W containing y and d. Then there is a planar embedding of G with a, b, c, d on the outer face.

Proof. Choose G to be a counterexample with $|V(G)|$ as small as possible. Note that if $|V(G)| = 6$, such an embedding is easy to find by embedding $abdc$ on the outer face in that order and embedding x and y inside as seen in Figure 5.2. Note that bc is not an edge since otherwise contracting x with a and y with d would give the rooted minor.

Suppose both a and d have degree 1. If the neighbor of a is not x, then deleting a and replacing it by its neighbor a' gives a smaller graph that satisfies the conditions of the theorem, so can be embedded with a', b, c, d on the outer face, so with a, b, c, d
on the outer face. So the neighbor of a is x and of d is y for the same reasons. But G contains another vertex p, say in U, in which case deleting x, b, c separates p from a, b, c, d. So not both a and d have degree 1.

We apply Theorem 5.3.2. Since outcome (1) of that theorem is impossible and outcome (2) of the theorem is our desired result, we may assume that we have outcome (3). So there exist vertices $p, q \in V(G) - \{a, b, c, d\}$ such that $G \setminus \{p, q\}$ has three components, two of which are exactly single vertices of $\{a, b, c, d\}$. Note that there is no vertex in $V(G) - \{a, b, c, d\}$ that is adjacent to both a and d and not both have degree 1, so a and d cannot be the two single vertex components. So we may assume that b is one of the single vertex components. If p and q are both in U, then deleting x and c separates y from a, b, c, d. So we may assume $p \in U, q \in W$. If c is the other single component, then deleting x, q, d separates W from a, b, c, d and deleting y, p, a separates U from a, b, c, d. Since one of U or W has at least three vertices, this is impossible.

So we may assume that a is the other single component. Since a does not neighbor q, a has degree 1, so by the minimality of G, $p = x$. But then $U = \{x, a\}$ since otherwise deleting x, c separates U from a, b, c, d. Suppose $y = q$. Then deleting y, c, d separates W from a, b, c, d and since $|W| \geq 3$, this is a contradiction. So $y \neq q$. Then delete b, add the edge xq and replace b by q in the statement of the theorem. By the minimality of G, the resulting graph embeds with a, q, c, d on the outer face. Note that a has degree at most 2 and neighbors x, so x is on the outer face as well, so the xq edge is on the outer face. Replacing the xq edge with the path xbq then gives the desired embedding.

\[\square\]

We are now prepared to prove the main theorem of this section.

Theorem 5.4.7. Let G be a 4-connected graph. Let X, Y be a 4-separation of G with $|X|, |Y| \geq 6$. Then either G contains $K_{4,4}$ minus an edge as a $Y - \Delta$ minor, G
contains a peripheral theta with arc e such that $G \setminus \{e\}$ is Kuratowski-connected, or G contains a separation (X', Y') of size 4, $|X'|, |Y'| \geq 6$ such that both X' and Y' contain rooted K_4 minors on $X' \cap Y'$ and are connected after deleting $X' \cap Y'$.

Proof. Let (A, A') and (B, B') be separations of G with $A \subseteq B'$ and $B \subseteq A'$ such that $|A \cap A'| = |B \cap B'| = 4$ and $|A|, |B| \geq 6$. Choose these sets so that as many of $G[A]$ and $G[B]$ as possible do not admit a planar embedding with, respectively, $A \cap A'$ and $B \cap B'$ on the outer face and, subject to that, $|A| + |B|$ is as small as possible. Note that a choice of A, B, A', B' exists by taking $A = B' = X, B = A' = Y$.

We will refer to a peripheral theta with arc e such that $G \setminus e$ is Kuratowski-connected as a *good peripheral theta*. We start by showing that one of A or B contains a peripheral theta and then find a good peripheral theta from there.

Suppose first that both A and B contain rooted K_4 minors on, respectively $A \cap A'$ and $B \cap B'$. Note that by Menger’s theorem we can find four vertex disjoint paths between $A \cap A'$ and $B \cap B'$, so we can find rooted K_4 minors on $A \cap A'$ in both A and A'. Suppose that either $A - A'$ or $A' - A$ is not connected. We may assume $A - A'$ is not connected since the proof of the other case is identical. Then let S be a subgraph of A' that contains the rooted K_4 minor. Then A contains a $K_{4,2}$ minor with all the vertices in $A \cap A'$ in distinct bags on the four side of the minor since each component of $A - A \cap A'$ neighbors all four vertices in $A \cap A'$, so by Lemma 5.4.5 and the K_4 minor in S, G contains $K_{4,4}$ minus an edge as a $Y - \Delta$ minor.

If instead $A - A'$ and $A' - A$ are connected, we have a desired outcome, so we may assume B does not contain a K_4 minor rooted on $B \cap B'$. Suppose that there is a K_4 minor in A rooted in $A \cap A'$. Then we apply Lemma 5.4.4 to the separation (B, B') to find that B contains either a rooted $K_{4,2}$ minor which, when combined with the K_4 minor gives a $K_{4,4}$ minus an edge $Y - \Delta$ minor by Lemma 5.4.5, or B contains a peripheral theta.

Suppose instead that neither A nor B contains a rooted K_4 minor. Then by
Lemma 5.4.4, each contains either a rooted $K_{4,2}$ minor which gives a $K_{4,4}$ minor when combined or at least one of the two contains a peripheral theta.

So we may assume that A does not contain K_4 minor rooted at $A \cap A'$ and does contain a peripheral theta with arc $e = xy$. Let $A \cap A' = \{a, b, c, d\}$. Note that Lemma 5.4.4 assures us that $x, y \notin \{a, b, c, d\}$. Suppose that $G' = G \setminus \{e\}$ is not Kuratowski-connected. Then there is a set $\{s, r, t\}$ such that $G \setminus \{e\}$ has a separation (U, V) with $U \cap V = \{r, s, t\}$ and $G'[U]$ and $G'[V]$ each cannot be embedded in the plane with $\{r, s, t\}$ on the outer face. Choose $\{r, s, t\}$ subject to the above so that $\{r, s, t\} \cap \{a, b, c, d\}$ is as large as possible.

Since G is 4-connected, we may assume $x \in U, y \in V$. We note that $\{a, b, c, d\}$ are not necessarily distinct from $\{s, r, t\}$, but all these vertices must be distinct from x and y. Let $Q_1 = A \cap U \setminus \{a, b, c, d, s, r, t\}, Q_2 = A \cap V \setminus \{a, b, c, d, s, r, t\}, Q_3 = (A') \cap U \setminus \{a, b, c, d, s, r, t\}, Q_4 = (A') \cap V \setminus \{a, b, c, d, s, r, t\}$.

Suppose first that $\{a, b, c, d\} \subseteq V$. Then if Q_3 is not empty, $\{r, s, t\}$ is a 3-cut in G. Since G does not have a separation of size less than 4, we must have that all of $\{r, s, t\}$ are in A since otherwise x and y are on either side of such a separation. By assumption, $G[Q_1 \cup \{r, s, t\}]$ cannot be embedded in the plane with r, s, t on the outer face, so has at least 5 vertices. But then we choose a new $A^* = Q_1 \cup \{y, r, s, t\}$ which is a strict subgraph of A and $G[A^*]$ cannot be embedded in the plane with y, r, s, t on the outer face. Thus we may assume $\{a, b, c, d\} \not\subseteq V$ and, by symmetry, $\{a, b, c, d\} \not\subseteq U$. Note that this implies that $\{r, s, t\} \not\subseteq \{a, b, c, d\}$.

Suppose next that two of $\{r, s, t\}$ are elements of $\{a, b, c, d\}$. Then we may assume $a = r, b = s$ and $c \in U, d \in V$. If $t \notin A'$, then since $|B| \geq 6$, at least one of $\{c, r, s\}$ or $\{r, s, d\}$ is a 3-cut, so we may assume $t \in A'$. By Lemma 5.4.6, $G[A]$ can be embedded in the plane with a, b, c, d on the outer face. Since $|B| \geq 6$, we may assume that Q_3 is not empty. Then take $A^* = Q_1 \cup Q_3 \cup \{a, b, c, t\}$ and $B^* = Q_2 \cup Q_4 \cup \{x, a, b, d, t\}$ to find sets A^* and B^* that satisfy the conditions for A and B, but do not allow an
embedding with $A^* \cap B^*$ on the outer face.

Suppose next that three of \{a, b, c, d\} are in U. Then we may assume $a, b \in U - V$ and $c \in U$. Since G does not contain a separation of size less than 4, at least two of s, r, t must be contained in A, say s and r (with r possibly the same as c) since otherwise x and y would be on either side of such a separation. Since $|B| \geq 6$, at least one of Q_3 or Q_4 is non-empty. If Q_4 is non-empty, then there is a small cut containing d and up to two of c, t that separates it from the rest of the graph. So Q_4 is empty, so Q_3 is non-empty, so, since a, b, c is not a cut, $t \in A' - A$. Note that d and t must be neighbors since t has vertex disjoint paths to each of a, b, c, d. Let $S_1 = Q_1 \cup Q_3 \cup \{a, b, c, s, r, t\}$ and $S_2 = Q_2 \cup \{s, r, t, d\}$. Then (S_1, S_2) is a separation in $G' = G - \{xy\}$ with intersection $\{s, r, d\}$. If $G'[S_1]$ could be embedded in the plane with $\{s, r, d\}$ on the outer face, then $G'[S_1 \cup \{t\}]$ can be embedded in the plane with $\{s, r, t\}$ on the outer face since t neighbors at most two of $\{s, r, d\}$. Similarly, if $G'[S_2]$ can be embedded in the plane with s, r, d on the outer face then $G'[S_2 - \{d\}]$ can as well with $\{s, r, t\}$ on the outer face since d and t are neighbors. But then $\{s, r, d\}$ contradicts the choice of $\{s, r, t\}$ since it has more overlap with $\{a, b, c, d\}$.

So we must have that all of a, b, c, d, r, s, t are distinct and $\{a, b\} \subset U, \{c, d\} \subset V$. One of Q_3 or Q_4 is non-empty, so we must have two of $\{r, s, t\}$ in A', say s, t. Similarly, $\{x, c, d\}$ is not a cut, so we must have $r \in A$. But then xy could not be the arc of a peripheral theta contained entirely in A, since that would require three vertex disjoint paths between x and y in A, but the xy edge and r separate x from y. \hfill \Box

5.5 Bounded Tree Width

In proving Theorem 5.2.1, we break the argument into two pieces. In this section, we handle the case in which G has bounded tree width. Specifically,

Theorem 5.5.1. Let G be a sufficiently large internally 5-connected graph with bounded tree width and no minor isomorphic to K_6 or $K_{4,4}$. Then either G is apex or
G contains a peripheral theta.

We make use of many of the ideas and results from [25], specifically the structure of a particular type of tree decomposition of G, called a path decomposition since the underlying tree is a path.

We state a theorem analogous to Corollary 3.9 in [25] taking (in the context of that Corollary), $p = 5$ rather than $p = 6$. We mention two small differences below.

Theorem 5.5.2. For all integers $l, w \geq 0$ there exists an integer N with the following property. If G is an internally 5-connected graph of tree-width at most w with at least N vertices, then either G has a minor isomorphic to K_6 or G has a linear decomposition of length at least l and adhesion at most w satisfying (L1)-(L9) below.

We now state the properties (L1)-(L9) that we require and then we mention differences between our properties and those in [25]. We view our linear decomposition of G as a family of sets $\mathcal{W} = (W_0, W_1, \ldots, W_l)$ such that

(L1) $\bigcup_{i=0}^{l} W_i = V(G)$, and every edge of G has both ends in some W_i

(L2) If $0 \leq i \leq j \leq k \leq l$, then $W_i \cap W_k \subseteq W_j$

(L3) There is an integer q such that $|W_{i-1} \cap W_i| = q$ for all $i = 1, 2, \ldots, l$. We refer to this property as having adhesion q.

(L4) For every $i = 1, 2, \ldots, l$, $W_{i-1} \neq W_{i-1} \cap W_i \neq W_i$

(L5) There exists a linkage from $W_0 \cap W_1$ to $W_{l-1} \cap W_l$ of cardinality q in which each path is induced

We refer to the linkage given by (L5) as \mathcal{P}, called the foundational linkage with paths called foundational paths.

(L6) For all $i \in \{1, 2, \ldots, l-1\}$, each \mathcal{P}-bridge of $G[W_i]$ has attachments in at least 2 members of \mathcal{P}.

(L7) For every path $P \in \mathcal{P}$, if there exists an index $i \in 1, 2, \ldots, l-1$ such that $P[W_i]$ is a trivial path, then $P[W_k]$ is a trivial path for all $k = 1, 2, \ldots, l-1$
(L8) For every two distinct paths $P, P' \in \mathcal{P}$, if there exists an integer $k \in \{1, \ldots, l-1\}$ such that P and P' are bridge adjacent in W_k, then they are bridge adjacent in $W_{k'}$ for all $k' \in \{1, \ldots, l-1\}$

(L9) Let $\mathcal{P}_1 \subseteq \mathcal{P}_2 \subseteq \mathcal{P}$ such that $|\mathcal{P}_1| + |\mathcal{P}_2| \leq 5$ and each member of \mathcal{P}_1 is non-trivial. Then there exists a linkage Q in G of cardinality $|\mathcal{P}_1|$ from $W_0 \cap W_1 \cap V(\mathcal{P}_1)$ to $W_{l-1} \cap W_l \cap V(\mathcal{P}_1)$ such that its graph is a subgraph of $H := G[W_0 \cup W_l] \cup \bigcup_{P \in \mathcal{P} - \mathcal{P}_2} P$.

There are only two differences between these properties and those in [25]. First, we choose the linkage in (L6) differently by allowing bridges to neighbor a trivial and a non-trivial path but not to only attach to a non-trivial path. The proof of the argument is nearly identical and follows immediately from Theorem 2.2 in [25]. Second, in (L9), we only have internally 5-connected rather than 5-connected but the proof is exactly identical.

We state the following hypothesis common to several forthcoming lemmas.

Hypothesis 5.5.3. Let $l \geq 2, q \geq 6, p = 5$ be integers and G be an internally 5-connected graph with no minor isomorphic to K_6 or $K_{4,4}$ and no peripheral theta, and let $\mathcal{W} = (W_0, W_1, \ldots, W_l)$ be a linear decomposition of G of length l and adhesion q with a foundational linkage \mathcal{P} such that conditions (L1)-(L9) hold.

Lemma 5.5.4. Assume Hypothesis 5.5.3. Then there do not exist $\binom{4q}{q}$ distinct indices i with $1 \leq i \leq l-1$ such that $G[W_i]$ contains a non-trivial \mathcal{P}-bridge attaching only to trivial foundational paths.

Proof. Suppose otherwise. Then there exist four distinct indices i such that $G[W_i]$ contains a non-trivial \mathcal{P}-bridge B_i attaching to the same subset of four trivial foundational paths. By contracting the internal vertices of each B_i to a single vertex, G has a $K_{4,4}$ minor which is a contradiction. \square

Lemma 5.5.5. Assume Hypothesis 5.5.3. If $l > 4\binom{q}{6}$ then \mathcal{P} contains at least one non-trivial path
Proof. Suppose otherwise. Then for every $i, 1 \leq i \leq l - 1$, $G[W_i]$ contains a non-trivial bridge B_i as $W_i \nsubseteq W_{i+1}, W_i \nsubseteq W_{i-1}$ by (L4), which contradicts Lemma 5.5.4.

\[\square\]

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{figure5.3.png}
\caption{Three trivial foundational paths}
\end{figure}

Lemma 5.5.6. Assume Hypothesis 5.5.3. If $l \geq 30$, then no non-trivial foundational path is bridge-adjacent to three or more trivial foundational paths.

Proof. Let P be the non-trivial foundational path and x, y, z be the trivial foundational paths. Let $u \in W_2 \cap W_3 \cap P$ and $v \in W_{29} \cap W_{30} \cap P$. Let H_{xy} be the set of P-bridges in G restricted to W_3 through W_{30} along with x, y, and P. By Theorem 5.3.1, either H_{xy} can be embedded in the plane with x, y, u, v on the outside or there are vertex disjoint paths between x and y and between u and v. Suppose the paths exist for each pair from \{x, y, z\}. Then by property (L9) we can find a path from u to v disjoint from all of these things, which immediately gives a K_6 minor.

So we may assume H_{xy} embeds planarly with u, x, v, y embedded on the outside in order. Let H be the largest plane subgraph of $H_{xy} \cap \bigcup_{i=10}^{20} W_i$ with boundary a cycle and let u', v' be the first and last vertices of P in H. Note that P divides H into two planar pieces each with boundary a cycle and P as part of that boundary. Call these two subgraphs H_x and H_y with $x \in H_x$ and $y \in H_y$. Then we claim that not both H_x
and H_y have vertices not on their outer cycle that neighbor z in G. Suppose there were such vertices. Then x and z are bridge-adjacent and y and z are bridge-adjacent. Look at $(G - H_{xy} - z) \cup \{u, v, x, y\}$. Either that graph embeds planarly with u, v, x, y on the outside, in which case G is apex or there are vertex-disjoint paths between x and y and u and v which produces a K_6 minor. So we may assume that H_x has no interior vertices that neighbor z in G.

We know that H_x is induced since H and P are induced. Suppose $G - H_x$ is not connected. Then there is some component of $H - H_x$ that attaches only to the outer cycle of H_x. If it attaches only to P, then that contradicts (L6). But then it attaches to the outside cycle of H which is impossible by the maximality of H. Finally, choose any set X of size 3 inside H_x and suppose in $H_x - X$ there is some component disjoint from the outer cycle of H_x. Then in G, X is still a cut since no interior vertex of H_x neighbors z. So by Lemma 5.4.2, G contains a peripheral theta which is a contradiction. □

We make use of the following definition from [25]

![Figure 5.4: A pinwheel with 4 vanes](image)
Definition. A pinwheel with \(t \) vanes is the graph defined as follows. Let \(C^1 \) and \(C^2 \) be two disjoint cycles of length \(2t \), where the vertices of \(C^i \) are \(v^i_1, v^i_2, ..., v^i_t \) in order. Let \(w_1, w_2, ..., w_t, x \) be \(t+1 \) distinct vertices. The pinwheel with \(t \) vanes has vertex-set \(V(C^1) \cup V(C^2) \cup \{ w_1, w_2, ..., w_t, x \} \) and edge-set \(E(C^1) \cup E(C^2) \cup \{ v^1_{2j}v^2_{2j} : 1 \leq j \leq t \} \cup \{ w_jv^1_{2j-1} : 1 \leq j \leq t, i = 1, 2 \} \cup \{ xw_j : 1 \leq j \leq t \} \)

A Mobius pinwheel with \(t \) vanes is obtained from a pinwheel with \(t \) vanes by deleting the edges \(v^1_{2t}v^1_1 \) and \(v^2_{2t}v^2_1 \) and adding the edges \(v^1_{2t}v^2_1 \) and \(v^2_{2t}v^1_1 \)

Note that a Mobius pinwheel with 4 vanes contains a \(K_6 \) minor as shown in [25].

The following lemmas are proven in [25] as Lemma 4.2 and Lemma 5.3 (with 5-connected replaced by internally 5-connected since the proof is identical)

Lemma 5.5.7. Assume Hypothesis 5.5.3. If \(l \geq 30 \), \(G \) does not contain a non-trivial bridge adjacent to three non-trivial paths.

Lemma 5.5.8. If an internally 5-connected graph \(G \) with no \(K_6 \) minor contains a subdivision of a pinwheel with 20 vanes as a subgraph, then \(G \) is apex.

This leads us to the following which is analogous to Lemmas 6.4 and 5.1 of [25] and uses the same proof.

Lemma 5.5.9. Assume Hypothesis 5.5.3. If there exist \(\binom{40q}{3} \) distinct indices \(i \in \{1, 2, ..., l-1\} \) such that \(G[W_i] \) contains a non-trivial \(P \)-bridge attaching to a trivial foundational path and two non-trivial foundational paths, then \(G \) is apex.

We define twisting paths as follows. Let \(G \) be a graph and \(W = (W_0, ..., W_l) \) be a linear decomposition of length \(l \) and adhesion \(q \) of \(G \), and let \(\mathcal{P} \) be a foundational linkage such that (L1–L5) hold. Let \(i \in \{1, 2, ..., l-1\} \), let \(P, P' \in \mathcal{P} \) be two non-trivial foundational paths, let \(W_{i-1} \cap W_i \cap V(P) = \{ x \} \), \(W_{i-1} \cap W_i \cap V(P') = \{ x' \} \), \(W_i \cap W_{i+1} \cap V(P) = \{ y \} \), and \(W_i \cap W_{i+1} \cap V(P') = \{ y' \} \). Let \(Q_1, Q_2 \) be two disjoint paths where \(Q_i \) has ends \(u_i \) and \(v_i \) for \(i = 1, 2 \). If the paths \(Q_1 \) and \(Q_2 \) are internally
disjoint from $V(P)$, the vertices x, u_1, u_2, y occur on P in that order, and x', v_2, v_1, y' occur on P' in that order, then we say that the foundational paths P and P' twist.

The following is Lemma 6.3 from [25]

Lemma 5.5.10. Let $l \geq 2, q \geq 3, p \geq 4$ be integers, and let $W = (W_0, W_1, ..., W_l)$ be a linear decomposition of length l and adhesion q of a graph G, and let P be a foundational linkage for W such that (L1)-(L5) and (L9) hold. If there exist $\binom{12q}{2}$ distinct indices $i \in \{1, 2, ..., l-1\}$ such that $G[W_i]$ contains a pair of twisting non-trivial foundational paths, then G has a K_6 minor.

This brings us to property

(L10) For every $i \in \{1, 2, ..., l-1\}$, no non-trivial P-bridge of $G[W_i]$ that attaches to two non-trivial paths attaches to any other paths in P

(L11) No two non-trivial paths twist

Lemma 5.5.11. Assume Hypothesis 5.5.3. If l is sufficiently large, then there exists a contraction W' of W of length l' such that W' and the corresponding restriction of P satisfy (L1)-(L11)

Proof. By Lemmas 5.5.7,5.5.9, and 5.5.10 there exists an index α such that for all $i \in \{0, 1, ..., l'\}$ the graph $G[W_{\alpha+i}]$ does not contain a non-trivial bridge attaching to two non-trivial paths and any other paths of P or twisting non-trivial paths. Then clearly the contraction $(\bigcup_{i=0}^{\alpha-1} W_i, W_\alpha, W_{\alpha+1}, ..., W_{\alpha+l'}, \bigcup_{i=\alpha+l'+1}^l W_i)$ of W is as desired. □

Lemma 5.5.12. Let $l \geq 30, q \geq 6$ be integers and G be an internally 5-connected graph with no $K_{1,4}$ or K_6 minor, no peripheral theta, and not apex and let $W = (W_0, W_1, ..., W_l)$ be a linear decomposition of G of length l and adhesion q with a foundational linkage P such that conditions (L1)-(L11) hold. Then G does not contain two non-trivial paths that are bridge-adjacent.
Proof. Let \(P \) and \(P' \) be the non-trivial foundational paths. Let \(W_2 \cap W_3 \cap V(P) = \{x\}, W_2 \cap W_3 \cap V(P') = \{x'\}, W_{29} \cap W_{30} \cap V(P) = \{y\}, \) and \(W_{29} \cap W_{30} \cap V(P') = \{y'\} \). Let \(H \) be the set of \(P \) bridges attaching to both \(P \) and \(P' \) in \(G \) restricted to \(W_3 \) through \(W_{29} \) along with \(P \) and \(P' \). By Lemma 5.3.1, either \(H \) can be embedded in the plane with \(x, y, y', x' \) on the outside in order or \(P \) and \(P' \) twist.

So we may assume \(H \) embeds planarly with \(x, y, y', x' \) embedded on the outside in order. Let \(H' \) be the largest plane subgraph of \(H \cap \bigcup_{i=10}^{20} W_i \) with boundary \(P Q_1 P' Q_2 \) where \(Q_1 \) and \(Q_2 \) are paths in \(H \) disjoint from \(P \) and \(P' \) except at their ends.

We know that \(H' \) is induced since \(H, P \) and \(P' \) are induced. Suppose \(G - H' \) is not connected. Then there is some component of \(H - H' \) that attaches only to the outer cycle of \(H' \). If it attaches only to \(P \) or \(P' \), then that contradicts (L6). But then it attaches to the outside cycle of \(H' \) which is impossible by the maximality of \(H' \). Finally, choose any set \(X \) of size 3 inside \(H' \) and suppose in \(H' - X \) there is some component disjoint from the outer cycle of \(H' \). Then in \(G \), \(X \) is a cut since by property (L10) no interior vertex of \(H' \) has neighbors outside of \(H' \). So by Lemma 5.4.2, \(G \) contains a peripheral theta which is a contradiction. \(\Box \)

We are now prepared to prove Theorem 5.5.1

Theorem 5.5.13. For every \(k \geq 0 \) there exists an integer \(N \) such that if \(G \) is an internally 5-connected graph on at least \(N \) vertices with tree width at most \(k \) and no minor isomorphic to \(K_6 \) or \(K_{4,4} \) then either \(G \) is apex or \(G \) contains a peripheral theta.

Proof. By Lemmas 5.5.2 and 5.5.11, \(G \) has a linear decomposition satisfying properties (L1)-(L11) with linkage \(P \). By Lemma 5.5.5, \(P \) contains a non-trivial path. Since \(G \) is internally 5-connected, \(P \) must be bridge-adjacent to either 3 trivial paths or another trivial path, both of which are impossible by Lemmas 5.5.6 and 5.5.12 which is a contradiction. \(\Box \)
5.6 Large Tree Width

Suppose instead that G has large tree width. Then we will look for some structure inside G that either contains a peripheral theta, a K_6 minor, or a large induced planar subgraph. We define first the notion of a wall, using the definition from [27]. Let $[r]$ denote $\{1, 2, ..., r\}$ and let $r \geq 2$ be an integer. An $r \times r$-grid is the graph with vertex-set $[r] \times [r]$ in which (i, j) is adjacent to (i', j') if and only if $|i - i'| + |j - j'| = 1$.

An elementary r-wall is obtained from the $2r \times r$-grid by deleting all edges with ends $(2i - 1, 2j - 1)$ and $(2i - 1, 2j)$ for all $i = 1, 2, ..., r$ and $j = 1, 2, ..., \lfloor r/2 \rfloor$ and all edges with ends $(2i, 2j)$ and $(2i, 2j + 1)$ for all $i = 1, 2, ..., r$ and $j = 1, 2, ..., \lfloor (r - 1/2) \rfloor$ and then deleting the two resulting vertices of degree one. An r-wall is any graph obtained from an elementary r-wall by subdividing edges.

This leads us to Theorem 1.6 of [27]:

Theorem 5.6.1. Let $t \geq 5$ and $r \geq 3 \lceil \sqrt{t} \rceil$ be integers. Let $n = 12288t^{24}, R = r^{2n},$ and $R_0 = 49152t^{24}(40t^2 + R)$. Let G be a graph, and let W_0 be an R_0-wall in G. Then either G contains a K_t minor or there exists a set $A \subseteq V(G)$ of size at most $t - 5$ and an r-subwall W of W_0 such that $V(W) \cap A = \emptyset$ and W is a flat wall in $G - A$.

In an internally 4-connected graph, G, a flat wall is a wall W with outer cycle C such that there is a separation (A, B) of G such that $A \cap B \subseteq V(C)$, $V(W) \subseteq B$ and
$G[B]$ can be drawn on a disk with C as its outer cycle. We say that the surface of W is $G[B]$.

The following version of 5.6.1 is more convenient for our purposes:

Theorem 5.6.2. For every integer $r > 1$, there exists integers k and n such that the following is true. Let G be an internally 5-connected graph of tree width at least k on at least n vertices. Then either G contains a K_6 minor or there exists a vertex $v \in V(G)$ such that $G - \{v\}$ contains a flat r-wall.

Since we prefer to work with planar rather than apex graphs, we would like to refine the ways in which v attaches to W.

Lemma 5.6.3. Let G be an internally 5-connected graph, $v \in V(G)$, $r \geq 1000$ be an integer, and let W be a flat r-wall in $G - \{v\}$. Let $r' = \lfloor r/100 \rfloor$. Then either there exists a flat r'-wall of $G - \{v\}$, W' with no vertex in the surface of W' adjacent to v in G or G contains a subdivision of a pinwheel with 20 vanes as a subgraph.

Proof. Partition the vertices of W in the natural way into 100 subwalls in a 10×10 grid, $W_{ij}, 1 \leq i, j \leq 10$. Since each of the W_{ij} is a flat wall of $G - \{v\}$, we may assume that some vertex in the surface of W_{ij} neighbors v in G. Take C_1 to be the outer cycle of W and C_2 to be the outer cycle of the subwall of W formed by the union of $W_{ij}, 3 \leq i, j \leq 8$. Let u_{ij} be the vertex in the surface of W_{ij} that is adjacent to v. Then by Menger’s Theorem, u_{ij} has vertex disjoint paths to C_1 and C_2 that stay entirely inside W_{ij} for $i = 2, 9, 2 \leq j \leq 9$ or $j = 2, 9, 2 \leq i \leq 9$. By including v and every other edge between v and a u_{ij}, this is a subdivision of a pinwheel with 20 vanes. □

This almost immediately gives us the main theorem of this section

Theorem 5.6.4. There exist integers k and n such that if G is an internally 5-connected graph with tree width at least k and at least n vertices with no minor isomorphic to K_6 or $K_{4,4}$ then G contains a peripheral theta.
Proof. Choose \(k \) and \(n \) as in Theorem 5.6.2 for \(r = 1000 \). Then \(G \) contains a vertex \(v \) and a flat \(r \)-wall in \(G - \{ v \} \). By Lemma 5.6.3 and Lemma 5.5.8, \(G \) contains a flat \(r' \)-wall, \(W, r' = \lfloor r/100 \rfloor \), with no vertex in the surface of \(W \) adjacent to \(v \). Let \(W' \) be an \(r' - 2 \) subwall of \(W \) that uses no vertices of the outer cycle of \(W \). Let \(C \) be the outer cycle of \(W \) and \(H \) be the component of \(G - \{ v \} - C \) that contains \(W' \). By our choice of \(H \), \(H \) is induced and \(G - H \) is connected. Since no vertex of \(H \) neighbors \(v \), there is no set of size three, \(X \), inside \(H \) such that \(H - X \) has a component disjoint from the outer cycle. By Lemma 5.4.2, \(G \) contains a peripheral theta. \(\square \)

5.7 The Main Theorem (revisited)

We now combine the previous two results and then restate and prove the main theorem of this chapter.

Theorem 5.7.1. There exists an absolute constant \(N \) such that every internally 5-connected graph \(G \) on at least \(N \) vertices with no minor isomorphic to \(K_6 \) or \(K_{4,4} \) either is apex or contains a peripheral theta graph.

Proof. Let \(k \) and \(n_1 \) be the values from Theorem 5.6.4 such that if \(G \) is an internally 5-connected graph with tree width at least \(k \) and at least \(n_1 \) vertices with no minor isomorphic to \(K_6 \) or \(K_{4,4} \) then \(G \) contains a peripheral theta. Let \(n_2 \) be the values from Theorem 5.5.1 such that if \(G \) is an internally 5-connected graph on at least \(n_2 \) vertices with tree width at most \(k \) and no minor isomorphic to \(K_6 \) or \(K_{4,4} \) then either \(G \) is apex or \(G \) contains a peripheral theta. Let \(N \) be the larger of \(n_1 \) and \(n_2 \). Then since the tree-width of \(G \) is either at most \(k \) or at least \(k \), we are done. \(\square \)

Which leads to the main theorem of the chapter.

Theorem 5.7.2. There exists an absolute constant \(N \) such that if \(G \) is a graph on at least \(N \) vertices at least one of the following holds:

1. \(G \) contains a graph in the Petersen family as a minor
(2) *G* contains a complete separation

(3) *G* contains a peripheral theta, the deletion of whose arc leaves *G* Kuratowski-connected

(4) There exists \(X \subseteq V(G), |X| \leq 1\) such that \(G \setminus X\) is planar

Proof. If \(G\) is not internally 5-connected, then it either contains a small separation (\(\leq 3\)) or contains a separation of size 4. All separations in the former case are complete. In the latter case, we apply Theorem 5.4.7 to find either outcome 1, 2, or 3 above. So we may assume \(G\) is internally 5-connected and not apex. But then applying Theorem 5.7.1 gives outcome 1 or outcome 3. \(\square\)

5.8 An Alternative Approach

In the above sections we discuss a possible approach to finding a flat embedding for a graph that makes use of peripheral thetas. Another possibility is to find a planar subgraph, contract an edge, and recur. Then, when we have a flat embedding for the contracted graph, find the sphere on which the planar subgraph is embedded and uncontract the edge in a planar way on that sphere. Ignoring the difficulties in finding the sphere, this seems, on the face of it reasonable. We formalize the notions as follows:

Definition. Let \(G\) be a graph. Let \(H\) be a subgraph of \(G\). If there exist a set of vertices \(X \subseteq V(H)\) such that \(E(H)\) contains all neighbors of \(X\) and there is a planar embedding of \(H\) whose outer cycle consists of exactly the vertices of \(V(H) \setminus X\), we say that \(H\) is locally planar about \(X\) and this embedding is the *representative embedding*. If \(H\) is connected, \(|X| \geq 2\) and \(X\) contains at least two vertices that are adjacent in \(G\), we say that \(H\) is an *eye* of \(G\) with *pupil* \(X\) and *iris* \(V(H) \setminus X\).

A nice companion to Theorem 5.2.1 would then be that every sufficiently large, internally 5-connected flat graph contains an eye. This statement, however, seems
more difficult. There are several dangers in the case of small cutsets, but there is a more significant danger in trying to prove an analogue of Lemma 5.5.6. Consider the following graph. Take an even path $P = v_1, v_2, \ldots, v_n$. Add three vertices a, b, c adjacent to all the vertices of P and an edge between a and b. We then add two vertices u and w with u adjacent to v_1, v_n, b, c and w adjacent to v_1, v_2, a, c. Finally, for i odd, $1 \leq i \leq n$ we add a vertex x_i adjacent to v_i, v_{i+1}, a, b. We will refer to a graph built from this construction as a tribranch and show an example in Figure 5.6.

![Figure 5.6: An embedded tribranch](image)

We note first that tribranches are internally 5-connected. Any cut set of size at most 4 other than the neighbors of a degree four vertex would need to include a, b and c. But then the resulting graph is at least two connected since every vertex is contained in a cycle. We show next that tribranches are flat.

Lemma 5.8.1. *Tribranches are flat.*

Proof. We show instead that tribranches are linkless and appeal to Theorem 5.1.1. We consider the embedding depicted in Figure 5.6. Let G be a tribranch. Then we delete vertex b and the edge between u and v_n and embed the resulting graph planarly. Add back vertex b as an apex and then add the $u - v_n$ edge as depicted (with the
$u - v_n$ edge on the side of the $c - w$ edge towards b). Note that the embedding without one of the $u - v_n$ edge or the $c - w$ edge is linkless since it is the canonical apex embedding. Further, contracting the $u - b$ edge or the $a - w$ edge would similarly result in a linkless embedding for the same reason. Finally, a and b are symmetrical in regards to this embedding.

We then consider two vertex disjoint cycles. Both the $u - v_n$ edge and the $c - w$ edge must be used, since otherwise their linking number is 0 since they are two cycles in the apex embedding. Similarly, if one cycle uses both edges, we can imagine a degree four vertex at their intersection and break that cycle into two pieces. The linking number of each piece with the other cycle must be 0 since the resulting embedding is the canonical apex one, so the linking number of the original two cycles must be 0 as well. So one of the cycles must use the $u - v_n$ edge and the other must use the $c - w$ edge.

Note that if either cycle uses the $u - b$ edge or the $w - a$ edge, their linking numbers must be 0, since then contracting the $u - b$ edge (or $w - a$ edge) gives two cycles in the canonical apex embedding. It is clear that uncontracting does not change their linking number here, so it must be 0.

Let C be the cycle that uses the $u - v_n$ edge and C' the cycle that includes the $w - c$ edge. Then C contains another edge incident with u and not the $u - b$ edge, so contains $u - v_1$. But then C' contains an edge incident with w which cannot be $w - a$ and does not contain v_1 or v_n, which is impossible, so this embedding must be linkless. □

So tribranches are flat, 5-connected graphs. We are now interested in showing that tribranches do not contain eyes whose pupil does not contain u or w. In an analogous proof to that of Lemma 5.5.6, we only have control over the vertices other that u and w, so this suffices as a counterexample to that particular technique. To do so, we show that, for each of these edges, there is no locally planar subgraph about
its ends. We require the following lemma

Lemma 5.8.2. Let G be a 4-connected graph with an edge uv in 3 triangles. Then G does not contain an eye with u and v in its pupil.

Proof. Suppose otherwise. Then there is an eye H with pupil X containing u and v. Let a, b, c be the neighbors of both u and v. Then $\{a, b, c\} \subset V(H)$. Look at a representative embedding of H with u and v not in the outer cycle. Since $K_{3,3}$ is not planar, in such an embedding at least one of the triangles auv, bug, cuv must be separating. Without loss of generality, we say it is auv. Let S be the set of vertices in the side of this separation disjoint from the outer cycle. Then all of the neighbors of vertices of S in G must be in H by the definition of an eye, but then $\{a, u, v\}$ is a separation in G which is a contradiction. □

We now consider the edges of a tribranch labelled as above and note that, except for edges whose ends are u or w, the only edges not in three triangles are from c to v_i, for $2 \leq i \leq n - 1$. But consider such an edge and not that the pupil of an appropriate eye can only contain c and v_i. Then v_{i-1} and v_{i+1} form a cutset divide the outer cycle of the eye into two pieces; those adjacent to c and those adjacent to v_i. So on one side lie a and b and on the other lie all of the other v_j as well as u and w. But u and w only have two neighbors between them other than a, b, c, so there is no path through all of the v_j as well as u and w that avoids a, b, c, so there can be no such eye.

Tribranches, then, do not contain eyes whose pupil does not contain u or w. If we wanted to prove an analogue for Theorem 5.2.1, the proof technique used throughout this chapter would not work. The vertices u and w are not within the bags considered as part of the linkage, so we have very little control over them; it seems unlikely that we would be able to guarantee that the eyes which contain them are actually eyes in the underlying graph. This serves to cast some doubt on the statement above, that sufficiently large, internally 5-connected flat graphs contain eyes, but, even more,
makes it very unlikely that any proof analogous to the one used for Theorem 5.2.1 could work.
CHAPTER VI

SERPENTS

6.1 Introduction

While the previous chapter was concerned with general, large flat graphs, this chapter is concerned with one particular structure. As noted previously, several classes of graphs have natural flat embeddings. For instance, planar graphs can be embedded planarly. Apex graphs can be embedded with the planar piece in a plane and the apex above it with straight lines to its neighbors. Both of these graphs are nearly planar in the sense that after deleting a small number of vertices (one in each case), the resulting graph is planar. A reasonable question might be to ask whether there is some fixed k such that all reasonably well-connected flat graphs can be made planar by deleting at most k vertices. This, however, is untrue. We present in this chapter a class of flat graphs that are 5-connected such that, for any k, there are infinitely many graphs in our class which are not planar after deleting any k vertices. Specifically,

Definition. Let G be a graph defined by the following construction. For $i \in \{1, \ldots, n\}$, let H_i be a plane graph with outer cycle C_i. For each H_i, let $v_{i1}, v_{i2}, \ldots, v_{i10}$ be vertices in order around C_i. For each $i \in \{1, \ldots, n-1\}$, add matchings between \{\(v_{i6}, v_{i8}, v_{i10}\) and \(v_{(i+1)1}, v_{(i+1)3}, v_{(i+1)5}\) and between \(v_{i7}, v_{i9}\) and \(v_{(i+1)2}, v_{(i+1)4}\). We call such a graph a *snakelet*, the union of the matchings a *transition*, and the H_i the *scales*.

We extend this definition, by allowing a special piece on either end:

Definition. Let G be a snakelet. We augment G as follows. Let P be a planar graph and H be either the first or last scale of G. Let v_1, \ldots, v_5 be vertices on the outer cycle
of H in order, such that there is a path on the outer cycle of H between v_1 and v_5 disjoint from a transition of H. We say that P is a tail of Type 1 if there is a vertex of P, u_1 and 4 vertices in order on the outer cycle of P, u_2, u_3, u_4, u_5 such that there is a matching between $\{u_1, u_3, u_5\}$ and $\{v_1, v_3, v_5\}$ and a matching between $\{u_2, u_4\}$ and $\{v_2, v_4\}$. We say that P is a tail of Type 2 if there exist nine vertices on the outer cycle of P in order, $u_1, \ldots u_9$ such that there is a matching between $\{u_1, u_3, u_5\}$ and $\{v_1, v_3, v_5\}$ and a matching between $\{u_2, u_4\}$ and $\{v_2, v_4\}$. and v_7v_9 is an edge and v_6v_8 is an edge. We say that a graph G' is a serpent if G' contains a snakelet with at most two tails, at most one attached to the first scale and at most one attached to the last scale.

We now intend to prove the following theorem:

Theorem 6.1.1. *Serpents are flat.*

We note first that, by choosing the interior planar graphs to be 5-connected, we can make our serpents 5-connected as well. In order to prove Theorem 6.1.1, we
instead prove that serpents are linkless, which proves that they are flat by Theorem 5.1.1. We will perform several computations in this chapter on the linking number, defined in Section 1.4.

6.2 Serpents

We will prove Theorem 6.1.1 by providing an embedding for every serpent. We begin by handling snakelets. Specifically, take a snakelet, embed each H_i planarly as specified in the definition in order from left-to-right by index. If all of the transitions were simply planar, this would then be a planar embedding. Then it remains to provide embeddings for each of the transitions. We may assume that none of the transitions are planar, since otherwise we can view the two scales joined by a planar transition as one larger scale. Note that we may assume that we have edges $v_{i,9}v_{(i+1),2}$ and $v_{i,7}v_{(i+1),4}$ in each transition by our choice of ordering C_i in the definition of G. There are, therefore, 5 different possible transitions, listed in Figure 6.3. The embeddings of each of the transitions given in the figures we will refer to as E_1, \ldots, E_5. We will refer to the embedding for each transition defined by, for each intersection, choosing the opposite edge to go over the other as $\overline{E}_1, \ldots, \overline{E}_5$. For a vertex v in a transition T we will refer to $T(v)$ as the neighbor of v in the transition.

For the ease of notation, for H_i a scale, we will refer to $u_{i,1} = v_{i,10}, u_{i,2} = v_{i,9}, \ldots, u_{i,5} = v_{i,6}$ as the right transfer, R, as well as to $v_{i,1}, \ldots, v_{i,5}$ as the left transfer, L. A transition is then a matching (of the particular type defined above) between the right transfer of scale H_i to the left transfer of scale H_{i+1}.

Definition. Let P be a path in G with both ends in H_i for some i and let $j_0 \leq i$ be an integer such that $|E(P) \cap E(T_j)| = 2$ for each transition T_j, $j_0 \leq j < i$ and such that P is contained in $\bigcup_{j=j_0}^{i} H_i$. Let $(c_{j_0}, d_{j_0}), (a_{j_0+1}, b_{j_0+1}), (c_{j_0+1}, d_{j_0+1}), \ldots, (a_i, b_i)$ be a sequence of pairs of integers such that the two edges of $E(P) \cap T_j$ are $u_{c_j}v_{a_j}$.
and \(u_d, v_b \). Then we say that \(P \) is a pseudocycle with twists \((c_{j_0}, d_{j_0}), (a_{j_0+1}, b_{j_0+1}), (c_{j_0+1}, d_{j_0+1}), \ldots (a_i, b_i)\). We refer to the twists \((c_j, d_j)\) as right twists and to the twists \((a_j, b_j)\) as left twists. The vertices of a left twist \((a_j, b_j)\) are \(v_{ja_j}\) and \(v_{jb_j}\) and of a right twist \((c_j, d_j)\) are \(u_{jc_j}\) and \(u_{jd_j}\).

We are interested in pairs of vertex disjoint cycles and would like to instead discuss pairs of vertex disjoint pseudocycles. Since pseudocycles may only use two edges of each transition, we need to take care of cycles that use four edges of each transition. We will refer to those cycles that use at most 2 edges of each transition as lean.

Lemma 6.2.1. Let \(C_1\) and \(C_2\) be vertex disjoint cycles in a serpent \(G\) with scales \(H_1, \ldots, H_i\). Then there exist a pair of vertex disjoint lean cycles, \(C'_1\) and \(C'_2\) so that \(C'_1\) and \(C'_2\) have the same linking number as \(C_1\) and \(C_2\).

Proof. Choose \(C_1\) and \(C_2\) to be the vertex disjoint cycles with the desired linking number such that the number of transitions in which one of \(C_1\) or \(C_2\) uses four edges
is minimum. We may assume G has at least two scales since otherwise C_1 and C_2 are both lean. If there is no transition such that C_1 and C_2 both use edges of that transition, we are done since their linking number is 0 and G contains vertex disjoint lean cycles with linking number zero (for example the outer cycles of two different scales). Let $i_0 \leq i_1$ be integers such that H_{i_0} and H_{i_1} both contain vertices of both C_1 and C_2 and so that $i_1 - i_0$ is as large as possible. Note that for $i_0 \leq i \leq i_1$, H_i contains vertices of both C_1 and C_2 since C_1 and C_2 are connected. By construction, C_1 and C_2 use exactly two edges each of $T_{i_0}, \ldots, T_{i_1-1}$. We may assume, by symmetry that C_1 is not lean, that it uses four edges of a transition T_j with $j \leq i_0$, and that both C_1 and C_2 use two edges of T_{i_0}.

Let x_1 and x_2 be the vertices of H_{i_0} incident with the two edges of $T_{i_0} \cap C_1$. Then let P_1, P_2 be the shortest subpaths of C_1 contained in H_{i_0} with end, respectively, x_1 or x_2 and the other end, respectively, y_1 or y_2, $y_1, y_2 \in V(T_{i_0-1}) \cap V(H_{i_0})$. Let z_1, z_2 be respectively the neighbors of y_1, y_2 in H_{i_0-1}. Let P_3 be the subpath of C_1 between x_1 and x_2 that contains two edges of T_{i_0} and let P_4 be a subpath of the outer cycle of H_{i_0-1} between z_1 and z_2. Let $C'_1 = x_1P_3x_2P_2z_2P_1z_1P_1x_1$. Then C'_1 and C_2 have the same linking number as C_1 and C_2 since C'_1 is identical to C_1 on any transitions used by both C_1 and C_2, but C'_1 has fewer transitions in which it uses four edges of that transition which contradicts our choice of C_1 and C_2. □

We will show that every pair of vertex disjoint lean cycles has linking number zero, so every pair of vertex disjoint cycles will as well.

Definition. Let P_1 and P_2 be two pseudocycles that are vertex-disjoint. Then we refer to (P_1, P_2) as a *pseudopair*. A *twist* in a pseudopair is a pair of tuples $(a, b), (c, d)$ for which there exists an i such that (a, b) is the right twist of P_1 in H_i and (c, d) is the right twist of P_2 in H_i. The *vertices* of a twist are the vertices of the corresponding right twists in P_1 and P_2. We will refer to the *final twist* of (P_1, P_2) to be the twist of (P_1, P_2) in the transition of highest index containing edges of both P_1 and P_2. 152
Definition. Let T be a transition and $a, b \in [1, 5]$ be distinct. Let u_a, u_b be the corresponding vertices of the right transfer of T and let e_a, e_b be the edges $u_a T(u_a), u_b T(u_b)$. Then $\phi_1(e_a, e_b) = 0$ if e_a and e_b do not cross, $+1$ if they do and e_a crosses under e_b, and -1 if they cross and e_a crosses over e_b. Let $\phi_2(e_a, e_b)$ be 1 if $b > a$ and -1 if $b < a$. Let $\phi_T(a, b) = \phi_1(e_a, e_b) \phi_2(e_a, e_b)$.

We refer to ϕ_T as the *transition function* for T and when the transition is understood, we refer to it simply as ϕ.

Definition. Let (P_1, P_2) be a pseudopair with a twist $((a, b), (c, d))$ with vertices v_a, v_b, v_c, v_d. Let e_a be the edge between v_a and $T(v_a)$ and similarly for e_b, e_c, e_d. Then we define the function $\text{lnk}((a, b), (c, d)) = \phi(e_a, e_c) + \phi(e_b, e_d) - \phi(e_b, e_c) - \phi(e_a, e_d)$, which we call the link of the twist.

Similarly, we refer to the link of a pseudopair as the sum of the links of each of its twists.

Let C_1 and C_2 be cycles formed by adding an edge between the two ends of P_1 and P_2 respectively. Then the linking number of C_1 and C_2 is exactly one half the link of the pseudopair (P_1, P_2) plus the contribution from crossings containing the newly added edges. This follows immediately from the definition of the link and the fact that the only crossings between edges of C_1 and C_2 occur at twists (again, ignoring the crossings from the two newly added edges).

Definition. Let (P_1, P_2) be a pseudopair with twist $((a, b), (c, d))$. Then we say that the twist is *planar* if there exists a planar graph on 5 vertices with outer cycle v_1, v_2, \ldots, v_5 and edges $v_1 v_2$ and $v_2 v_4$.

Definition. Let (P_1, P_2) be a pseudopair with twist $((a, b), (c, d))$. Then the *parity* of the twist is 0 if it is planar. If it is non-planar, the parity is 1 if $a - b$ and $c - d$ have the same sign and -1 otherwise.
Note that the parity of twist i within a pseudopair is entirely determined by twist $i - 1$ and the corresponding transition T_i. Similarly, the link of any twist $((a, b), (c, d))$ in a pseudopair is determined by the embedding of the transition on the edges with one end at v_a, v_b, v_c, v_d.

Instead of discussing lean cycles, we intend to discuss pseudopairs. The following lemma will allow this:

Lemma 6.2.2. Let C_1 and C_2 be vertex-disjoint lean cycles in a snakelet G. Then there exists a pseudopair (P_1, P_2) with planar final twist whose link is twice the linking number of C_1 and C_2.

Proof. Choose C_1 and C_2 so that the number of scales that contain a vertex of one but not the other is minimum. We may assume that there is some scale containing vertices of both cycles since otherwise we are done. If there is such a scale H_i, say it contains vertices of C_1 but not C_2. Suppose C_2 has vertices in some scale $H_j, j > i$. Then C_1 uses exactly two vertices of $H_i \cap T_i$, say v_a, v_b. Then we can replace the subpath of C_2 between v_a and v_b that does not contain vertices of H_{i+1} with a subpath of the outer cycle of H_i between v_a and v_b. So we may assume that there are at most two scales containing vertices of one of C_1 and C_2 and not the other and that in those scales, the subpath of the corresponding cycle is just a path in the outer cycle of the scale.

Delete an edge of C_1 in the scale of highest index, H_i that contains two of its vertices and do the same for C_2 to find paths P_1 and P_2. Then (P_1, P_2) is a pseudopair. Since the edges deleted from C_1 and C_2 did not cross (since they were edges of a scale) and since the linking number of C_1 and C_2 is determined solely by crossings on transitions, then by the definition of the linking number and the link, the link of (P_1, P_2) is half the linking number of C_1 and C_2. Further, (P_1, P_2) must have planar final twist since contracting the edges of C_1 and C_2 contained in H_i (and possibly H_{i+1} or H_{i-1}) gives the desired planar graph. \(\square\)
<table>
<thead>
<tr>
<th>Right</th>
<th>Left</th>
<th>Parity</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1, 2), (3, 4)</td>
<td>(1, 2), (5, 4)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(1, 2), (3, 5)</td>
<td>(1, 2), (5, 3)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(1, 2), (4, 5)</td>
<td>(1, 2), (4, 3)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(1, 3), (4, 5)</td>
<td>(1, 5), (4, 3)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(1, 4), (2, 3)</td>
<td>(1, 4), (2, 5)</td>
<td>+</td>
<td>−</td>
</tr>
<tr>
<td>(1, 5), (2, 3)</td>
<td>(1, 3), (2, 5)</td>
<td>+</td>
<td>−</td>
</tr>
<tr>
<td>(1, 5), (2, 4)</td>
<td>(1, 3), (2, 4)</td>
<td>+</td>
<td>−</td>
</tr>
<tr>
<td>(1, 5), (3, 4)</td>
<td>(1, 3), (5, 4)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(2, 3), (4, 5)</td>
<td>(2, 5), (4, 3)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(2, 5), (3, 4)</td>
<td>(2, 3), (5, 4)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(1, 3), (2, 4)</td>
<td>(1, 5), (2, 4)</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>(1, 3), (2, 5)</td>
<td>(1, 5), (2, 3)</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>(1, 4), (2, 5)</td>
<td>(1, 4), (2, 3)</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>(1, 4), (3, 5)</td>
<td>(1, 4), (5, 3)</td>
<td>−2</td>
<td>0</td>
</tr>
<tr>
<td>(2, 4), (3, 5)</td>
<td>(2, 4), (5, 3)</td>
<td>−2</td>
<td>0</td>
</tr>
</tbody>
</table>

Figure 6.4: Parity and links for E_1

The next lemma follows immediately from the definition of \lnk.

Lemma 6.2.3. Let $X = ((a, b), (c, d))$ be a twist. Then $\lnk(X) = \lnk((c, d), (a, b)) = -\lnk((d, c), (a, b))$

We present information about each transition in Figures 6.4 through 6.8. The first column lists, up to permutation, all of the possible right twists for a pseudopair. The top portion of each table corresponds to those pseudopairs that have zero parity and the bottom portion corresponds to those that have parity +1. The second column shows the resulting left twist. The third shows the change in parity between those two twists, and the fourth shows the link of the right twist in that transition.

Lemma 6.2.4. There is a choice of embeddings for each of the transitions of G, T_1, \ldots, T_n, chosen from either E_i or \bar{E}_i for the appropriate $i \in \{1, 2, 3, 4, 5\}$ as shown above with the following two properties. Any pseudopair with a planar final twist has link 0. The link of every pseudopair with non-planar final twist is either 1 or −1 and
<table>
<thead>
<tr>
<th>Right</th>
<th>Left</th>
<th>Parity</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1, 2), (3, 4)</td>
<td>(3, 2), (1, 4)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(1, 2), (3, 5)</td>
<td>(3, 2), (1, 5)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(1, 2), (4, 5)</td>
<td>(3, 2), (4, 5)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(1, 3), (4, 5)</td>
<td>(3, 1), (4, 5)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(1, 4), (2, 3)</td>
<td>(3, 4), (2, 1)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(1, 5), (2, 3)</td>
<td>(3, 5), (2, 1)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(1, 5), (3, 4)</td>
<td>(3, 5), (1, 4)</td>
<td>+</td>
<td>−</td>
</tr>
<tr>
<td>(2, 3), (4, 5)</td>
<td>(2, 1), (4, 5)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(2, 5), (3, 4)</td>
<td>(2, 5), (1, 4)</td>
<td>+</td>
<td>−</td>
</tr>
<tr>
<td>(1, 3), (2, 4)</td>
<td>(3, 1), (2, 4)</td>
<td>−2</td>
<td>0</td>
</tr>
<tr>
<td>(1, 3), (2, 5)</td>
<td>(3, 1), (2, 5)</td>
<td>−2</td>
<td>0</td>
</tr>
<tr>
<td>(1, 4), (2, 5)</td>
<td>(3, 4), (2, 5)</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>(1, 4), (3, 5)</td>
<td>(3, 4), (1, 5)</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>(2, 4), (3, 5)</td>
<td>(2, 4), (1, 5)</td>
<td>−</td>
<td>−</td>
</tr>
</tbody>
</table>

Figure 6.5: Parity and links for E_2

<table>
<thead>
<tr>
<th>Right</th>
<th>Left</th>
<th>Parity</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1, 2), (3, 4)</td>
<td>(5, 2), (3, 4)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(1, 2), (3, 5)</td>
<td>(5, 2), (3, 1)</td>
<td>+</td>
<td>−</td>
</tr>
<tr>
<td>(1, 2), (4, 5)</td>
<td>(5, 2), (4, 1)</td>
<td>+</td>
<td>−</td>
</tr>
<tr>
<td>(1, 3), (4, 5)</td>
<td>(5, 3), (4, 1)</td>
<td>+</td>
<td>−</td>
</tr>
<tr>
<td>(1, 4), (2, 3)</td>
<td>(5, 4), (2, 3)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(1, 5), (2, 3)</td>
<td>(5, 1), (2, 3)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(1, 5), (2, 4)</td>
<td>(5, 1), (2, 4)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(1, 5), (3, 4)</td>
<td>(5, 1), (3, 4)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(2, 3), (4, 5)</td>
<td>(2, 3), (4, 1)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(2, 5), (3, 4)</td>
<td>(2, 1), (3, 4)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(1, 3), (2, 4)</td>
<td>(5, 3), (2, 4)</td>
<td>−2</td>
<td>0</td>
</tr>
<tr>
<td>(1, 3), (2, 5)</td>
<td>(5, 3), (2, 1)</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>(1, 4), (2, 5)</td>
<td>(5, 4), (2, 1)</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>(1, 4), (3, 5)</td>
<td>(5, 4), (3, 1)</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>(2, 4), (3, 5)</td>
<td>(2, 4), (3, 1)</td>
<td>−2</td>
<td>0</td>
</tr>
</tbody>
</table>

Figure 6.6: Parity and links for E_3
<table>
<thead>
<tr>
<th>Right</th>
<th>Left</th>
<th>Parity</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1, 2), (3, 4)</td>
<td>(3, 2), (5, 4)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(1, 2), (3, 5)</td>
<td>(3, 2), (5, 1)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(1, 2), (4, 5)</td>
<td>(3, 2), (4, 1)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(1, 3), (4, 5)</td>
<td>(3, 5), (4, 1)</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>(1, 4), (2, 3)</td>
<td>(3, 4), (2, 5)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(1, 5), (2, 3)</td>
<td>(3, 1), (2, 5)</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>(1, 5), (2, 4)</td>
<td>(3, 1), (2, 4)</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>(1, 5), (3, 4)</td>
<td>(3, 1), (5, 4)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(2, 3), (4, 5)</td>
<td>(2, 5), (4, 1)</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>(2, 5), (3, 4)</td>
<td>(2, 1), (5, 4)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(1, 3), (2, 4)</td>
<td>(3, 5), (2, 4)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(1, 3), (2, 5)</td>
<td>(3, 5), (2, 1)</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>(1, 4), (2, 5)</td>
<td>(3, 4), (2, 1)</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>(1, 4), (3, 5)</td>
<td>(3, 4), (5, 1)</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>(2, 4), (3, 5)</td>
<td>(2, 4), (5, 1)</td>
<td>−</td>
<td>−</td>
</tr>
</tbody>
</table>

Figure 6.7: Parity and links for E_4

<table>
<thead>
<tr>
<th>Right</th>
<th>Left</th>
<th>Parity</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1, 2), (3, 4)</td>
<td>(5, 2), (1, 4)</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>(1, 2), (3, 5)</td>
<td>(5, 2), (1, 3)</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>(1, 2), (4, 5)</td>
<td>(5, 2), (4, 3)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(1, 3), (4, 5)</td>
<td>(5, 1), (4, 3)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(1, 4), (2, 3)</td>
<td>(5, 4), (2, 1)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(1, 5), (2, 3)</td>
<td>(5, 3), (2, 1)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(1, 5), (2, 4)</td>
<td>(5, 3), (2, 4)</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>(1, 5), (3, 4)</td>
<td>(5, 3), (1, 4)</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>(2, 3), (4, 5)</td>
<td>(2, 1), (4, 3)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(2, 5), (3, 4)</td>
<td>(2, 3), (1, 4)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(1, 3), (2, 4)</td>
<td>(5, 1), (2, 4)</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>(1, 3), (2, 5)</td>
<td>(5, 1), (2, 3)</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>(1, 4), (2, 5)</td>
<td>(5, 4), (2, 3)</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>(1, 4), (3, 5)</td>
<td>(5, 4), (1, 3)</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>(2, 4), (3, 5)</td>
<td>(2, 4), (1, 3)</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Figure 6.8: Parity and links for E_5
every two pseudopairs with non-planar final twists with the same parity have the same link.

Proof. We proceed by induction on the number of scales of G. If there is just 1, then the statement is trivial.

Suppose the statement is true for graphs with i scales, H_0, \ldots, H_{i-1}. We consider the scale H_i with transition T_i. Let H be G restricted to the first i scales. Then applying induction to H gives a choice of embeddings for the first $i-1$ transitions. If the link of every pseudopair with non-planar final twist is the same as the parity of that twist, embed T_i as the appropriate E_i. Otherwise, choose \overline{E}_i. We proceed with the proof in the case where we choose E_i and note that the argument is identical in the other case.

We now consider a pseudopair using T_i, (P_1, P_2). The restriction of (P_1, P_2) to H satisfies the properties of the lemma. Suppose that restriction had a planar final twist. Then its link is 0. If (P_1, P_2) also has planar final twist, then, consulting Figures 6.4 through 6.8 shows that the link is 0. If it does not have planar final twist, if T_i is of type 1, 2, or 3, then it now has link -1 and parity $+1$. Otherwise it now has link $+1$ and parity $+1$.

Suppose instead that the restriction had a non-planar final twist. Then it had parity $+1$ and link $+1$ or parity -1 and link -1. We may assume by symmetry that it has parity $+1$ and link $+1$ and consult the above table. If (P_1, P_2) has a planar final twist, then the link of this transition is -1 (again consulting Figures 6.4 through 6.8). Otherwise, if T_i is of type 1, 2, or 3, then the parity switches but the link stays the same, so it now has link $+1$ and parity -1. Otherwise, the parity and link stay the same, so the final twist has link $+1$ and parity $+1$.

Corollary 6.2.5. Snakelets are flat.

Proof. Let C_1 and C_2 be vertex-disjoint cycles. By Lemma 6.2.1, we may assume C_1 and C_2 are lean. Then by Lemma 6.2.2 there is a pseudopair with planar final twist
whose link is the same as the linking number of C_1 and C_2. By Lemma 6.2.4, C_1 and C_2 then have linking number 0. Since every pair of vertex disjoint cycles has 0 linking number, the graph is linkless and therefore flat. □

We would now like to extend the previous theorem to serpents. We discuss first tails of type 1. Let P be a tail of type 1 and let H_0 be the scale of G with a transition to P. Let v_1, \ldots, v_5 be vertices on the outer cycle of H in order, such that there is a path on the outer cycle of H between v_1 and v_5 disjoint from a transition of H. Then there is a vertex of P, u_1 and 4 vertices in order on the outer cycle of P, u_2, u_3, u_4, u_5 such that there is a matching between $\{u_1, u_3, u_5\}$ and $\{v_1, v_3, v_5\}$ and a matching between $\{u_2, u_4\}$ and $\{v_2, v_4\}$. It will be more convenient to assume that this matching is as simple as possible; specifically, we would like to assume that the edges of the matching are $u_1v_1, u_3v_3, u_5v_5, u_2v_2, u_4v_4$. We call such a tail, a simple tail of type 1.

Lemma 6.2.6. Let G be a serpent with a tail of type 1, P, adjacent to a scale H_0. Then there is a graph G' obtained from G by replacing the edges between H_0 and P by a scale H with transitions to P and H_0 such that G is linkless if G' is linkless and, in G', P is a simple tail of type 1.

Proof. Let $v_1, \ldots, v_5 \in V(H_0)$ and $u_1 \ldots u_5 \in V(P)$ be as defined above. Let T be the matching between them and let f be a function from $v_1 \ldots v_5$ onto $\{1, 2, 3, 4, 5\}$ with $f(v_i) = j$ if the edge $v_iu_j \in T$.

Let H be the cycle on 10 vertices a_1, \ldots, a_{10} and chords $a_1a_{10}, a_2a_9, a_3a_8, a_4a_7, a_5a_6$. Remove the edges of T from G and add the H along with the edges $a_{10}u_1, a_9u_2, a_8u_3, a_7u_4, a_6u_5, v_1a_{f(v_1)}, v_2a_{f(v_2)}, v_3a_{f(v_3)}, v_4a_{f(v_4)}, v_5a_{f(v_5)}$ to get G'. Then G is clearly a minor of G', so is linkless if G' is and P is a simple tail of type 1 in G'. □

We note that an embedding of G' in the previous lemma of the type we discuss in this paper immediately gives an embedding for G in the natural way.
For the remainder of the paper, we assume that tails of type 1 are simple. For each of the two types of tails, we give an embedding, \(S_1 \) or \(S_2 \) shown in Figure 6.9. Note that in \(S_1 \), the edge from \(v_1 \) to \(u_1 \) goes under every other edge in that tail. We define \(S_1, S_2 \) analogously to \(E_1, \ldots, E_5 \).

Lemma 6.2.7. Let \(G \) be an embedded serpent with scales \(H_1, \ldots, H_n \) and tails \(H_0 \) and \(H_{n+1} \). Suppose \(H_0 \) is a simple tail of type 1 and embedded according to embedding \(S_1 \) or \(\overline{S_1} \). Then there is a serpent \(G' \) obtained from \(G \) by replacing \(H_0 \) with a tail of type 2 embedded according to \(S_2 \) or \(\overline{S_2} \) respectively such that the following is true. Let \(C_1 \) and \(C_2 \) be vertex disjoint cycles in \(G \). Then there exist vertex disjoint cycles \(C_1' \) and \(C_2' \) in \(G' \) such that \(C_1' \) and \(C_2' \) have the same linking number as \(C_1 \) and \(C_2 \).

Proof. Let \(u_2, u_3, u_4, u_5 \) be the four vertices in order on the outer cycle of \(H_0 \) adjacent to vertices of \(H_1 \) and let \(u_1 \) be the other vertex of \(H_0 \) adjacent to a vertex of \(H_1 \). We may assume the neighbors of \(v_i \) are \(u_i, i \in \{1, 2, 3, 4, 5\} \) as in the definition of a simple tail of type 1. Let the edges between \(H_0 \) and \(H_1 \) be \(T \).

Let \(H \) be the cycle on 9 vertices \(a_1, \ldots, a_9 \) with chords \(a_1a_9, a_2a_8, a_2a_9, a_3a_7, a_3a_8, a_4a_6, a_4a_7, a_5a_6, a_7a_9, a_6a_8 \). Replace \(H_0 \) by \(H \) and add the edges \(v_i a_i, i \in \{1, 2, 3, 4, 5\} \) to find \(G' \). Let \(T' \) be these added edges. \(G' \) is then a serpent which we embed as in the statement of the lemma.

Let \(C_1 \) and \(C_2 \) be vertex-disjoint cycles of \(G \). We may assume \(C_1 \) and \(C_2 \) are lean.
by Lemma 6.2.1. If C_1 and C_2 do not both use edges of T, then it is easy to find cycles in G' that agree with C_1 and C_2 on $G' \setminus H_0$ and then replace the subpath in H_0 with a path in the outer cycle of H. So we may assume C_1 and C_2 each use two edges of T. Further, the contribution to the linking number in $T \cup H_0$ must be non-zero, since otherwise it is easy to find C'_1 and C'_2 as desired. If neither uses the v_1u_1 edge, then there is no contribution to the linking number in $H_0 \cup T$. So we may assume that C_1 uses the edge v_1u_1. If C_1 also uses the edge v_2u_2 or v_3u_5, then again there is no contribution to the linking number in H_0, so we are done. So we may assume that C_1 uses the v_3u_3 edge or the v_4u_4 edge. Let P_1 be the subpath of C_1 in $H_0 \cup T$ with ends among the v_i, $i \in \{1, 2, 3, 4, 5\}$ and P_2 defined similarly for C_2.

Suppose C_1 uses the v_3u_3 edge. Then C_2 must use the v_2u_2 edge. If it uses the v_4u_4 edge or the v_5u_5 edge, replace P_1 by $v_1a_1a_9a_7a_5v_3$ and P_2 by, respectively, $v_2a_2a_8a_6a_4v_4$ or $v_2a_2a_8a_6a_5v_5$ to find the desired cycles. If C_1 uses the v_4u_4 edge, then C_2 uses the v_5u_5 edge and one of the edges v_2u_2 or v_3u_3. Then replace P_1 by $v_1a_1a_9a_7a_4$ and P_2 by, respectively, $v_5a_5a_6a_8a_2$ or $v_5a_5a_6a_8a_3$ to find the desired cycles. □

Lemma 6.2.8. Let G be an embedded serpent with scales H_1, \ldots, H_n and tails H_0 and H_{n+1}. Suppose H_0 is of type 2 and embedded according to embedding S_2 or $\overline{S_2}$. Then there is a serpent G' obtained from G by replacing H_0 with two scales with a transition between them of type 2 embedded according to E_2 or $\overline{E_2}$ respectively such that the following is true. Let C_1 and C_2 be vertex disjoint cycles in G. Then there exist vertex disjoint cycles C'_1 and C'_2 in G' such that C'_1 and C'_2 have the same linking number as C_1 and C_2.

Proof. Let v_6, v_7, v_8, v_9 be the four vertices of the outer cycle of H_0 in order with edges v_6v_8 and v_7v_9 given by the definition of a tail of type 2. We define A_1 to be H_0 without the edges v_6v_8 or v_7v_9 and an additional vertex v_{10} added by subdividing the path in the outer cycle between v_8 and v_9 once. Let A_2 be the cycle on ten vertices u_1, \ldots, u_{10} with an chord between v_1 and v_5. Let A be formed from $A_1 \cup A_2$ by adding
edges $v_6u_3, v_{10}u_2, v_{7}u_1, v_8u_4, v_9u_5$. Then G' is formed from G by replacing H_0 with A. Note that the edges we added between A_1 and A_2 form exactly a transition of type 2, T. We embed T according to E_2 or $\overline{E_2}$ as in the statement of the lemma.

We may assume H_0 was embedded according to S_2 by symmetry, so T is embedded according to E_2. Let C_1 and C_2 be vertex-disjoint cycles of G. If C_1 and C_2 do not contain v_6v_8 or v_7v_9, then an image of them exists in G' embedded in the same way, so the corresponding cycles have the same linking number. If one of the cycles contains the edge v_6v_8, replace it by the path $v_6u_3u_4v_8$ in G'' and similarly if one of the cycles contains the path v_7v_9 replace it by the path $v_7u_1u_5v_9$. The two cycles formed by these replacements are vertex disjoint and have the same linking number as C_1 and C_2 by our choice of embeddings. □

These lemmas lead to the following theorem:

Lemma 6.2.9. Let G be a serpent. Then there is a choice of embeddings for the two tails chosen from S_i or $\overline{S_i}$ for $1 \leq i \leq 2$ and for each of the transitions of G, T_1, \ldots, T_n, chosen from either E_i or $\overline{E_i}$ for the appropriate i as shown above such that any two vertex-disjoint cycles in G has linking number 0.

Proof. If G has any tails of type 1, we can find a new graph G' whose embedding will tell us the appropriate embedding for G but which has no tails of type 1 by applying Lemma 6.2.7 at most twice. Then, if G' has any tails of type 2, we can find a new graph G'' with no tails by applying Lemma 6.2.8 at most twice. We may then apply Lemma 6.2.4 to find the appropriate embedding. □

This immediately proves the main theorem of this chapter:

Theorem 6.2.10. Serpents are flat.
CHAPTER VII

CONCLUSION

In this chapter, we reiterate the main results of this thesis and discuss avenues of further research.

7.1 Coloring

In Chapter 2, we proved as Theorem 2.1.4 the following:

Theorem 7.1.1. Every planar graph without cycles of length four through six or eared seven cycles is 3-colorable.

The desired extension, is, naturally, Steinberg’s Conjecture, but there are several intermediate results that are of interest. One possible next step would be to consider planar graphs without cycles of length four or five or eared cycles of length six or seven. In this case, six cycles are generally easier to handle than seven cycles for the purpose of reducibility. By this we mean that if C is a 6-cycle with vertices $v_1, v_2, v_3, v_4, v_5, v_6$ in order, then we can identify, for instance v_1 with v_5 and v_2 with v_4. This, along with the two symmetric operations, immediately gives three smaller graphs, any of whose coloring extends to the bigger one. In addition, we can identify v_1, v_3, v_5 to find another two potential reductions. There is one significant difficulty in this extension, however. In the case of Theorem 2.1.4, there was only one exceptional graph, H^* (the graph formed by taking an 11-cycle v_1, \ldots, v_{11} and adding a vertex adjacent to v_1, v_2, and v_7), exceptional in the sense that there are colorings of its outer cycle that do not extend to colorings of the entire graph. If we continue to allow an outer cycle of length 11, there are many exceptional graphs; however if we limit it to size nine, there are only two immediate small examples shown in Figure
7.1. We conjecture that these are, in fact, the only two exceptional graphs with outer cycle of length at most nine. Note that reducing the size of the outer cycle makes the reductions in Chapter 2 more difficult, but this remains a potentially fruitful avenue of investigation.

![Figure 7.1: Exceptional graphs allowing six cycles](image)

The above difficulty reflects the general problem with this technique in attempting Steinberg’s Conjecture. The result of Borodin et al in [10] that planar graphs excluding cycles of length four through seven are three colorable contended with no exceptional graphs. The result in Chapter 2 handled exactly one. To handle the weakening of Steinberg’s Conjecture restricted to just planar graphs that exclude cycles of length four through six, we would need to deal with infinitely many, even if we only extend from an outer cycle of length at most nine. For example, we consider the following construction. Let H_0 be the graph depicted in Figure 7.2: it consists of an outer cycle of length 9 with vertices v_1, \ldots, v_9, a triangle u_1, u_2, u_3 disjoint from the outer cycle, and three additional vertices x_1, x_2, x_3 along with edges $v_1x_1, v_2x_1, x_1u_1, v_3x_2, v_5x_2, x_2u_2, v_7x_3, v_8x_3, x_3u_3$. We note that H_0 has three vertices on the outer cycle of degree 2; such will be the case for each graph H_i. Let H_i be the graph formed
from H_{i-1} by adding nine vertices in a cycle, v_1, \ldots, v_9 and edges $v_1u_1, v_2u_1, v_4u_2,$ v_5u_2, v_7u_3, v_8u_4 where u_1, u_2, u_3 are the vertices of degree 2 in H_{i-1}. Then note that v_3, v_6 and v_9 all have degree 2. We show H_1 in Figure 7.3 as an example.

Theorem 7.1.2. There is no proper 3-coloring of H_i, $i \geq 0$ in which the vertices of the outer cycle of degree 2 are colored the same.

Proof. We proceed by induction. We use the notation above, that v_1, \ldots, v_9 form the outer cycle with vertices v_3, v_6, v_9 of degree two, u_1, u_2, u_3 the triangle with no neighbors on the outer face and x_1, x_2, x_3 the final three vertices with x_1 adjacent to u_1, v_1, v_2, x_2 adjacent to u_2, v_4, v_5, and x_3 adjacent to u_3, v_7, v_8. Then if we color v_3, v_6, v_9 all with color 1, then each of x_1, x_2, x_3 must also be colored 1 which makes it impossible to color $u_1, u_2,$ and u_3.

Assume the induction hypothesis holds for $0 \leq i < n$. Then for H_n, let $v_1 \ldots v_9$ be the vertices of the outer cycle with v_3, v_6, v_9 of degree two and u_1, u_2, u_3 the vertices not on the outer cycle with neighbors on the outer cycle. Then if we color v_3, v_6, v_9 with color 1, then u_1, u_2, u_3 are colored 1 as well, so by the induction hypothesis the resulting graph does not admit a proper 3-coloring. \(\square\)
The graphs $H_i, i \geq 0$ are not the only exceptional graphs (for another example, take a 9-cycle, v_1, \ldots, v_9 and add two adjacent vertices u_1, u_2 and edges $v_1u_1, v_2u_1, v_6u_2, v_7u_2$). If we wish to pursue a similar discharging-type argument a reasonable avenue to explore is to enumerate the small exceptional graphs and see if the larger ones can then be classified into particular families, like the H_i above. Clearly if we knew exactly all the exceptional graphs, we would have a proof of the conjecture, but if we could understand the bad colorings for the more obvious families we might be able to use that and a similar extension-type argument to find the others.

7.2 Pfaffian Orientations

In Chapter 3, we proved as Theorem 3.1.3 that

Theorem 7.2.1. Every internally 4-connected bipartite non-planar graph has an odd hex.

While we make use of this theorem in the context of Pfaffian orientations, this
theorem is nice in another sense. By a variation on Kuratowski’s Theorem, we know that 3-connected non-planar bipartite graphs contain a subdivision of $K_{3,3}$. So we have a bipartite graph containing another bipartite graph as a subdivision. A reasonable question, then, is when can this be done in a bipartite way, in the sense that the subdivision is odd? There are a number of other properties that can be viewed in this way; for instance when does a non-outer planar bipartite graph contain an odd subdivision of $K_{2,3}$? In the context of Pfaffian orientations, it would be nice to understand this odd subdivision containment for non-bipartite graphs. While being internally 4-connected is not a strong enough condition to guarantee an odd $K_{3,3}$ subdivision (take V_8 as an example), a theorem in a similar vein would have useful applications to the general Pfaffian orientation question.

In Chapter 4, we reproved several theorems of [42]. In doing so, we developed on the techniques from Chapter 3. The main new area of research here is whether we can make use of these techniques in graphs that are not bipartite, particularly in bricks. We note that many of the tools that we used in this chapter, unlike the previous, made use of alternating paths rather than vertex parity, which leaves some hope that they could be extended to a more general class of graphs with matching characteristics. These, or similar, techniques, then could be useful in converting a structural theorem in the vein of Little’s Theorem for bricks into a polynomial time algorithm.

One appropriate intermediate result could be to work in near-bipartite graphs:

Definition. Let G be a matching-covered graph such that there exists a pair of edges, e and f such that $G - \{e, f\}$ is bipartite and matching covered. Then we say that G is **near-bipartite**.

For near-bipartite graphs, the question of finding a Pfaffian orientation has already been solved, but requires one further definition. We say that a graph is a **weak matching minor** of another if the first can be obtained from a matching minor of the
other by contracting odd cycles and deleting all resulting loops and parallel edges. Let Γ_1 and Γ_2 be as shown in Figure 7.4. Then Fischer and Little [15] showed that

Theorem 7.2.2. A near-bipartite graph admits a Pfaffian orientation if and only if it has no weak matching minor isomorphic to $K_{3,3}$, Γ_1, or Γ_2.

While this theorem does not give a polynomial-time characterization, that problem has been solved in [32]. It remains a natural question, then, to see whether our techniques can be used to prove a similar algorithm and whether they can be extended to more general classes of graphs.

7.3 Flat Embeddings

In Chapter 5, we proved as Theorem 5.2.1 a structural result for flat graphs:

Theorem 7.3.1. There exists an absolute constant N such that if G is a graph on at least N vertices at least one of the following holds:

1. G contains a graph in the Petersen family as a minor
(2) G contains a complete separation

(3) G contains a peripheral theta, the deletion of whose arc leaves G Kuratowski-connected

(4) There exists $X \subseteq V(G), |X| \leq 1$ such that $G\setminus X$ is planar

One immediate question that arises is whether this theorem holds for all graphs, not just sufficiently large ones. This would be an interesting result, though its applications in our context are likely limited. That context is an attempt to extend this theorem to a polynomial-time algorithm to determine whether a graph is flat. The proof of the theorem itself is naturally algorithmic, but there are a number of technical difficulties in using it to find an algorithm to construct a flat embedding. The first difficulty is in bounding the complexity of that embedding, which leads to a natural question: Is there a representation of a flat embedding of a graph with polynomial complexity in the size of the graph? In this case, the standard notions of complexity of an embedding are either the number of crossings in the regular projection or the number of pieces in a piecewise linear embedding, though it’s possible that there is some other representation of an embedding that is more appropriate for this purpose.

A natural algorithmic implementation of the above theorem is to, assuming outcomes two or three, break the graph into smaller pieces and embed those. A difficulty is in then putting the pieces back together. In either case, we need at least one panel on at least one cycle, but finding such a panel in an embedding is difficult if the embedding is not carefully constructed. In fact, if we had an algorithm to find a panel on a particular cycle in a fixed embedding, such an algorithm would immediately solve the long-open unknotting problem. But the embedding that we have is not arbitrary, so a plausible approach to this problem would be to find some invariant of the embedding or to keep track of panels on important cycles throughout the recursion.

Even failing to find the complete algorithm, there are several intermediate results
that could be of interest. For example, what if we ignore the difficulty of keeping track of cycles. Suppose we have a polynomial-time oracle to find a panel on a cycle in a flat embedding. Is there a polynomial-time algorithm for finding a flat embedding of a graph given such an oracle? Can we weaken such an oracle to only solving the unknotting problem? That is to say, is there a polynomial time algorithm for finding a flat embedding given a polynomial-time oracle for the unknotting problem?
REFERENCES

